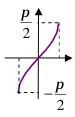
第二节 反三角函数

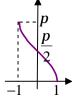
一、反三角函数值

- 1、若角 $x \in [-\frac{p}{2}, \frac{p}{2}]$, $\sin x = a$, 则角x 叫做实数a 的反正弦函数,记作 $\arcsin a = x$
- 2、若角 $x \in [0, p]$, $\cos x = a$, 则角x 叫做实数a的反余弦函数,记作 $\arccos a = x$
- 3、若角 $x \in (-\frac{p}{2}, \frac{p}{2})$, $\tan x = a$, 则角 x 叫做实数 a 的反正切函数,记作 $\arctan a = x$
- 4、若角 $x \in (0,p)$, $\cot x = a$, 则角x 叫做实数a 的反余弦函数,记作 $\arccos a = x$ 例 1、求反三角函数值
- (1) $\arcsin \frac{1}{2}$ (2) $\arcsin(-\frac{1}{2})$ (3) $\arccos \frac{1}{2}$ (4) $\arccos(-\frac{1}{2})$
- (5) $\arctan \sqrt{3}$ (6) $\arctan(-\sqrt{3})$ (7) $\operatorname{arc} \cot \sqrt{3}$ (8) $\operatorname{arc} \cot(-\sqrt{3})$
- 解: (1) 因为 $\frac{p}{6} \in [-\frac{p}{2}, \frac{p}{2}], \sin \frac{p}{6} = \frac{1}{2}$, 于是 $\arcsin \frac{1}{2} = \frac{p}{6}$
- (2) 因为 $-\frac{p}{6} \in [-\frac{p}{2}, \frac{p}{2}], \sin(-\frac{p}{6}) = -\frac{1}{2}$,于是 $\arcsin(-\frac{1}{2}) = -\frac{p}{6}$
- (3) $\mathbf{Q} \frac{p}{3} \in [0, p], \cos \frac{p}{3} = \frac{1}{2}, \therefore \arccos \frac{1}{2} = \frac{p}{3}$
- $(4)\mathbf{Q}\frac{2p}{3} \in [0,p], \cos\frac{2p}{3} = -\frac{1}{2}, \therefore \arccos(-\frac{1}{2}) = \frac{2p}{3}$
- (5) $\mathbf{Q} \frac{p}{3} \in (-\frac{p}{2}, \frac{p}{2}), \tan \frac{p}{3} = \sqrt{3}, \therefore \arctan \sqrt{3} = \frac{p}{3}$
- (6) $\mathbf{Q} \frac{p}{3} \in (-\frac{p}{2}, \frac{p}{2}), \tan(-\frac{p}{3}) = -\sqrt{3}, \therefore \arctan(-\sqrt{3}) = -\frac{p}{3}$
- (7) $\mathbf{Q} \frac{p}{6} \in (0, p), \cot \frac{p}{6} = \sqrt{3}, \therefore \operatorname{arc} \cot \sqrt{3} = \frac{p}{6}$
- (8) $\mathbf{Q} \frac{5p}{6} \in (0, p), \cot \frac{5p}{6} = -\sqrt{3}, \therefore \operatorname{arc} \cot(-\sqrt{3}) = \frac{5p}{6}$
- 二、反三角 $\arcsin a$ 的四个特性
- 1、表示 $\left[-\frac{p}{2},\frac{p}{2}\right]$ 上的一个角x,并且角x的正弦等于a
- 2、表示正弦运算的逆运算
- 3、表示方程 $\sin x = a$ 在 $\left[-\frac{p}{2}, \frac{p}{2}\right]$ 上的解
- 4、表示 $y = \sin x$ 与 y = a 的交点的横坐标

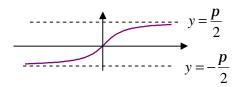

反三角函数 $\operatorname{arccos} a$, $\operatorname{arctan} a$, $\operatorname{arccot} a$ 也有类似的四个特征。 三、公式

 $\arcsin(-a) = -\arcsin a$, $\arccos(-a) = p - \arccos a$

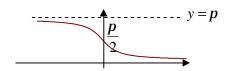
 $\arctan(-a) = -\arctan a$, $\arctan(-a) = p - \arctan a$


四、反三角函数

1、 y = sinx 在区间 $[-\frac{p}{2}, \frac{p}{2}]$ 上反函数为 y = arcsin x,它的定义域是 [-1,1],值域是 $[-\frac{p}{2}, \frac{p}{2}]$,是增函数,奇函数。图象如图



2、 $y = \cos x$ 在区间[0, p]上反函数为 $y = \arccos x$,它的定义域是[-1, 1],值域是[0, p],


是减函数。图象如图

3、 $y = \tan x$ 在区间($-\frac{p}{2}, \frac{p}{2}$) 上反函数为 $y = \arctan x$ 它的定义域是 R,值域是 $(-\frac{p}{2}, \frac{p}{2})$,是增函数,奇函数。图象如图

4、上反函数为 $y = \operatorname{arc} \cot x$ 它的定义域是R,值域是(0, p),是减函数。

