廖老师网上千题解答分类十一、大纲数列

- 13、设数列 $\{a_n\}$ 的前n项和为 S_n , 且 $S_n = c + 1 ca_n$, 其中c是不等于-1和0的实常数.
- (1) 求证: $\{a_n\}$ 为等比数列;
- (2) 设数列 $\{a_n\}$ 的公比q = f(c),数列 $\{b_n\}$ 满足 $b_1 = \frac{1}{3}, b_n = f(b_{n-1})(n \in N, n \ge 2)$,试写出 $\left\{\frac{1}{b_n}\right\}$ 的通项公式,并求 $b_1b_2 + b_2b_3 + \mathbf{L} + b_{n-1}b_n$ 的结果.
- 解(1) $\frac{a_n}{a_{n-1}} = \frac{c}{c+1} (c \neq 0)$, 所以是等比数列
- (2) $b_n = \frac{b_{n-1}}{1+b_{n-1}} \Rightarrow b_n + b_n b_{n-1} = b_{n-1} \Rightarrow \frac{1}{b_n} \frac{1}{b_{n-1}} = 1$,所以 $\{b_n\}$ 是等差数列, $b_n = \frac{1}{n+2}$
- (3) $b_{n-1}b_n = \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} \frac{1}{n+2}$
- $S_n = b_1 b_2 + b_2 b_3 + \mathbf{L} + b_{n-1} b_n = \frac{1}{3} \frac{1}{4} + \frac{1}{4} \frac{1}{5} + \mathbf{L} + \frac{1}{n+1} \frac{1}{n+2} = \frac{1}{3} \frac{1}{n+2}$
- 14、设数列 $\{a_n\}$ 的前n项和为 S_n ,且 $S_n=rac{1}{3}a_n-1$,求 $\{a_{2n}\}$ 的通项公式;

解:
$$a_1 = \frac{1}{3}a_1 - 1, a_1 = -\frac{3}{2}$$

当
$$n^3$$
 2时, $S_n = \frac{1}{3}a_n - 1$, $S_{n-1} = \frac{1}{3}a_{n-1} - 1$

相减得
$$a_n = \frac{1}{3}a_n - \frac{1}{3}a_{n-1}, a_n = -\frac{1}{2}a_{n-1}$$

因此
$$\{a_n\}$$
是等比数列公比为 - $\frac{1}{2}$

$$a_n = -\frac{3}{2}(-\frac{1}{2})^{n-1} = 3(-\frac{1}{2})^n, a_{2n} = 3(-\frac{1}{2})^{2n} = \frac{3}{2^{2n}}$$

26、数列 $\{a_n\}$ 中, $a_{n+1} = \frac{1}{a_n} + a$,求证:对于一切正整数 n 都有 $a_n > 1$

证明:
$$a_1 = 1 + a = \frac{1 - a^2}{1 - a}$$
, $a_2 = \frac{1}{a_1} + a = \frac{1 - a}{1 - a^2} + a = \frac{1 - a^3}{1 - a^2}$

$$a_3 = \frac{1}{a_2} + a = \frac{1 - a^2}{1 - a^3} + a = \frac{1 - a^4}{1 - a^3}, \quad \stackrel{\text{def}}{\text{Hil}}: \quad a_n = \frac{1 - a^{n+1}}{1 - a^n} \quad (*)$$

下面用数数归纳法证明(*)

当 n=1 时(*) 显然成立

假设当 n=k 时 (*) 成立,即
$$a_k = \frac{1-a^{k+1}}{1-a^k}$$

$$\text{III } a_{k+1} = \frac{1}{a_k} + a = \frac{1 - a^k}{1 - a^{k+1}} + a = \frac{1 - a^{k+2}}{1 - a^{k+1}}$$

即当 n=k+1 时(*) 也成立

故当
$$n \in N_+$$
时 $a_n = \frac{1 - a^{n+1}}{1 - a^n}$ 成立

$$a_n - 1 = \frac{1 - a^{n+1}}{1 - a^n} - 1 = \frac{1 - a^{n+1} - 1 + a^n}{1 - a^n} = \frac{a^n (1 - a)}{1 - a^n} > 0, \therefore a_n > 1$$

数学归纳

- 21、哪位能告诉我,用数学归纳法证明恒等式的过程中,当 n=k+1 时用等式完假设以后,可以在从右边推吗?
- (1) 我认为数学归纳法原理这样叙述更好:若一个命题的所有特殊情况是可列的,若第一种特殊情况命题成立,并且在假设每一种特殊情况命题成立的情况下总能推出后一种特殊命题也成立,则此命题总成立。
- (2)数学归纳法两个步骤:第一步证基础(证第一种特殊情况命题成立) 第二步证递推(假设每一种特殊情况命题成立的情况下总能推出后一种特殊命题 也成立)
- (3) 哪位能告诉我,用数学归纳法证明恒等式的过程中,当 n=k+1 时用等式完假设以后,可以在从右边推吗?
- 答: 只要能以 n=k 时用等式成立为条件,证出 n=k+1 时等式成立也成立就完成了证递推的工作,对于 n=k+1 时的等式从左证到右和从右证到左都是可以的

32、数列
$$\{a_n\}$$
中, $a_1=1$,且 $S_n,S_{n+1},2S_1$ 成等差数列,求 S_n

解:
$$2S_{n+1} = S_n + 2$$
, $S_{n+1} = \frac{1}{2}S_n + 1$ (1)

∴可设
$$(S_{n+1}+k)=\frac{1}{2}(S_n+k)$$
, $S_{n+1}=\frac{1}{2}S_n-\frac{1}{2}k$ 与(1)对照得中 $k=-2$

$$\therefore (S_{n+1} - 2) = \frac{1}{2}(S_n - 2)$$

故,
$$\{S_n-2\}$$
是等比数列,公比为 $\frac{1}{2}$,首项为 $S_n-2=-1$

$$S_n - 2 = -(\frac{1}{2})^{n-1}, \quad S_n = 2 - (\frac{1}{2})^{n-1}$$

33、设
$$\{a_n\}$$
是首项为 1 的正项数列且 $(n+1)a_{n+1}^2 - na_n^2 + a_{n+1}a_n = 0$,求 a_n

解:
$$(n+1)a_{n+1}^2 - na_n^2 + a_{n+1}a_n = 0$$
, $na_{n+1}^2 - na_n^2 + a_{n+1}^2 + a_{n+1}a_n = 0$

$$n(a_{n+1} + a_n) (a_{n+1} - a_n) + a_{n+1} (a_{n+1} + a_n) = 0$$

$$\mathbf{Q}(a_{n+1}+a_n) > 0$$
, $\therefore n(a_{n+1}-a_n) + a_{n+1} = 0$

$$(n+1)a_{n+1} - na_n = 0, \quad \frac{a_{n+1}}{a_n} = \frac{n}{n+1}$$

$$\therefore a_n = a_1 \bullet \frac{a_2}{a_1} \bullet \frac{a_3}{a_2} \bullet \cdots \bullet \frac{a_n}{a_{n-1}} = 1 \bullet \frac{1}{2} \bullet \frac{2}{3} \bullet \cdots \bullet \frac{n-1}{n} = \frac{1}{n}$$

34、 已知数列
$$\{a_n\}$$
中,若 $a_1 = \frac{1}{2}$, $a_{n+1} = \frac{a_n}{a_n+1}$, 求 a_n

解:
$$a_{n+1} = \frac{a_n}{a_n+1} \Rightarrow \frac{1}{a_n+1} = \frac{1}{a_n} + 1$$
, $\{\frac{1}{a_n}\}$ 是等差数列,公差为 1,首项为 2

$$\frac{1}{a_n} = 2 + n - 1 = n + 1$$
, $a_n = \frac{1}{n+1}$

36、求和
$$T_n = n \cdot 1 + (n-1) \cdot 2 + \mathbf{L} + 2 \cdot 2^{n-2} + 2^{n-1}$$

解:
$$T_n = n \cdot 1 + (n-1) \cdot 2 + \mathbf{L} + 2 \cdot 2^{n-2} + 2^{n-1}$$
 (1)

$$2T_n = n \cdot 2 + (n-1) \cdot 2^2 + \mathbf{L} + 2 \cdot 2^{n-1} + 2^n$$
 (2)

由(2)-(1)得

$$T_n = -n + 2 + 2^2 + 2^3 + \mathbf{L} + 2^{n-1} + 2^n = -n + \frac{2(2^n - 1)}{2 - 1} = 2^{n+1} - n - 2$$

51、题目: $x^2 - x + a = 0$, $x^2 - x + b = 0$ 两方程的四根成等差数列

等差数列的首项为 $\frac{1}{4}$,则 a+b=?

解: 设
$$\frac{1}{4}$$
是方程 $x^2 - x + a = 0$ 根,则别一个根是 $\frac{3}{4}$
∴ $a = \frac{3}{16}$

设方程 $x^2 - x + b = 0$ 的两个根分别为 $x_1, x_2, x_1 < x_2,$

$$x_1 + x_2, = 1 = \frac{1}{4} + \frac{3}{4}$$

由于 $\frac{1}{4}$ 、 $\frac{3}{4}$ 、 x_1 、 x_2 ,是等差数列的四个项,由等差数列的加法对称性

可知这个等差数列为, $\frac{1}{4}$ 、 x_1 、 x_2 , $\frac{3}{4}$

由此得公差
$$d = \frac{\frac{3}{4} - \frac{1}{4}}{4 - 1} = \frac{1}{6}$$
, $x_1 = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$, $x_2 = \frac{7}{12}$

$$\therefore b = \frac{35}{144}, \quad \therefore a + b = \frac{27 + 35}{144} = \frac{31}{72}$$

79、已知数列 $\{a_n\}$ 满足以下递归关系 $\hat{1}_{1}a_{n+1}=3a_n+4$,求通项 a_n

先证明一个有用的定理。

已知 a_n =A a_{n-1} +B ,A、B、C 是常数,且 $A \neq 1$, $AB \neq 0$,求证:数列 $\{a_n + \frac{B}{A-1}\}$ 是等比数列

证明
$$\frac{a_n + \frac{B}{A-1}}{a_{n-1} + \frac{B}{A-1}} = \frac{Aa_{n-1} + B + \frac{B}{A-1}}{a_{n-1} + \frac{B}{A-1}} = \frac{Aa_{n-1} + \frac{AB}{A-1}}{a_{n-1} + \frac{B}{A-1}} = A$$

$$\{a_n + \frac{B}{A-1}\}$$
 是是等比数列,公比为 A,首顶为 $a_1 + \frac{B}{A-1}$

由于课本没有给出这个结论,因此我们常用待定系数法来求常数 $\frac{B}{A-1}$,

已知 a_{n+1} =3 a_n +4, a_1 =1, 求证: a_n

解: 设 a_{n+1} +k=3(a_n +k)

则 $a_{n+1} = 3 a_n + 2k$ 与 $a_{n+1} = 3 a_n + 4$ 对照得 k = 2

$$a_{n+1} + 2 = 3(a_n + 2)$$

 $: \{a_n + 2\}$ 是是等比数列,公比为 3,首顶为 $a_1 + 2 = 3$

$$a_n + 2 = 3 \times 3^{n-1}, \quad a_n = 3^n - 2$$

88、无穷数列 $\{a_n\}$ 的前 n 项和 $S_n = npa_n \ (n \in N^+)$.并且 $a_1 \neq a_2$

(1) 求
$$p$$
 的值 (2) 求 $\{a_n\}$ 的通项公式

解(1)
$$S_n = npa_n$$

$$a_1 = pa_1 \Rightarrow p = 1 \stackrel{?}{\coprod} a_1 = 0$$

当
$$p=1$$
时,由 $S_2=npa_2$ 得 $a_1+a_2=2a_2$,故 $a_1=a_2$ 与 $a_1\neq a_2$ 相矛盾

于是
$$a_1 = 0$$

由
$$S_2 = 2pa_2$$
 得 $a_2 = 2pa_2$,因 $a_2 \neq a_1 = 0$,故 $p = \frac{1}{2}$

故
$$S_n = \frac{1}{2}na_n$$

$$S_{n-1} = \frac{1}{2}(n-1)a_{n-1} \ (n \ge 2)$$

相减得
$$a_n = \frac{1}{2}na_n - na_{n-1} = \frac{1}{2}(n-1)a_{n-1}$$

$$a_n(n-1) = na_{n-1}, \quad \frac{a_n}{a_{n-1}} = \frac{n}{n-1}, \quad a_n = a_1 \bullet \frac{a_2}{a_1} \bullet \frac{a_3}{a_2} \mathbf{L} \cdot \frac{a_n}{a_{n-1}} = \frac{a_n}{a_{n-1}} = \frac{n}{n-1}$$

105、等差数列,其前前n项和记作Sn,若Sp=q,Sq=p,求Sp+q

解:
$$(p, \frac{S_p}{p})$$
, $(q, \frac{S_q}{q})$, $(p+q, \frac{S_{p+q}}{p+q})$ 三点共线

$$\frac{S_{p+q}}{p+q} - = \frac{q}{p} - \frac{q+p}{p} = -1$$
, $S_{p+q} = -p-q$

106、数列
$$\{a_n\}$$
满足 $S_n = n^2 a_n$,若 $a_1 = 1003$,则 $a_{2005} =$ _____

解:
$$a_n = S_n - S_{n-1} = n^2 a_n - (n-1)^2 a_{n-1}$$
, $(n^2 - 1)a_n = (n-1)^2 a_{n-1}$, $\frac{a_n}{a_{n-1}} = \frac{n-1}{n+1}$

$$\therefore a_n = a_1 \bullet \frac{a_2}{a_1} \bullet \frac{a_3}{a_2} \bullet \cdots \bullet \frac{a_n}{a_{n-1}} = 1003 \bullet \frac{1}{3} \bullet \frac{2}{4} \bullet \cdots \bullet \frac{n-1}{n+1} = \frac{2006}{n(n+1)}$$

$$a_{2005} = \frac{1}{2005}$$

130、若数列 $\{a_n\}$ 前8项的值各异,且 $a_{n+8}=a_n$ 对任何的n属于正整数都成立,则下列数列中可取遍 $\{a_n\}$ 前8项值的数列为 (

(A)
$$\{a_{2k+1}\}$$

(B)
$$\{a_{3k+1}\}$$
 (c) $\{a_{4k+1}\}$

(d)
$$\{a_{6k+1}\}$$

解:本题选B.

因为 a_{3k+1} 可以取到 a_4 , a_7 , $a_{10}=a_2$, a_{13} , $a_{16}=a_1$

 $a_{19}=a_3$, $a_{22}=a_6$, $a_{25}=a_1$

135、 $x^2 - x + a = 0$, $x^2 - x + b = 0$ 两方程的四根成等差数列

等差数列的首项为 $\frac{1}{4}$,则 a+b=?

解: 设 $\frac{1}{4}$ 是方程 $x^2 - x + a = 0$ 根,则别一个根是 $\frac{3}{4}$, $\therefore a = \frac{3}{16}$

设方程 $x^2 - x + b = 0$ 的两个根分别为 $x_1, x_2, x_1 < x_2$,

$$x_1 + x_2, = 1 = \frac{1}{4} + \frac{3}{4}$$

由于 $\frac{1}{4}$ 、 $\frac{3}{4}$ 、 x_1 、 x_2 ,是等差数列的四个项,由等差数列的加法对称性

可知这个等差数列为, $\frac{1}{4}$ 、 x_1 、 x_2 , $\frac{3}{4}$

由此得公差 $d = \frac{\frac{3}{4} - \frac{1}{4}}{4 - 1} = \frac{1}{6}$, $x_1 = \frac{1}{4} + \frac{1}{6} = \frac{5}{12}$, $x_2 = \frac{7}{12}$

$$\therefore b = \frac{35}{144}, \quad \therefore a + b = \frac{27 + 35}{144} = \frac{31}{72}$$

136、已知方程 $(x^2 - 2x + m)(x^2 - 2x + n) = 0$ 的四个根组成一个首项为 $\frac{1}{4}$ 的等差数

列,则|m-n|等于()

解: 不妨设方程 $x^2 - 2x + m = 0$ 的根为 $\frac{1}{4}$ 和 a,

$$x^{2} - 2x + n = 0$$
的两根为 x_{1} 和 x_{2} ,则
$$\begin{cases} \frac{1}{4} + a = 2 \\ x_{1} + x_{2} = 2 \end{cases}$$
 故 $a = \frac{7}{4}$

由等差数列的加法对称性知这个数列是 $\frac{1}{4}$, x_1 , x_2 , $\frac{7}{4}$ 由此得, $x_1 = \frac{3}{4}$, $x_2 = \frac{5}{12}$

148、 求证1² + 2² + 3² + **L** +
$$n^2 = \frac{n(n+1)(2n+1)}{6}$$

讲解:此题的方法很多,证明等式成立用数学归纳法最快

下面讲一讲公式的推导

方法 1、设
$$S_n = 1^2 + 2^2 + 3^2 + \mathbf{L} + n^2$$

$$(n+1)^3 - n^3 = 3n^2 + 3n + 1$$

故:
$$(n+1)^3 = 1^3 + (2^3 - 1^3) + (3^3 - 2^3) + \mathbf{L} + [(n+1)^3 - n^3]$$

$$= 1 + (3 \cdot 1^2 + 3 \cdot 1 + 1) + (3 \cdot 2^2 + 3 \cdot 2 + 1) + (3 \cdot 3^2 + 3 \cdot 3 + 1) + \mathbf{L} + (3n^2 + 3n + 1)$$

$$=1+3(1^2+2^2+3^2+\mathbf{L}+n^2)+3(1+2+3+\mathbf{L}+n)+n$$

$$= 1 + 3S_n + \frac{3n(n+1)}{2} + n$$

$$\therefore 3S_n = (n+1)^3 - \frac{3n(n+1)}{2} - (n+1) = \frac{2(n+1)^3 - 3n(n+1) - 2(n+1)}{2}$$

$$=\frac{(n+1)[2(n+1)^2-3n-2]}{2}=\frac{(n+1)(2n^2+n)}{2}=\frac{n(n+1)(2n+1)}{2}$$

$$\therefore S_n = 1^2 + 2^2 + 3^2 + \mathbf{L} + n^2 = \frac{n(n+1)(2n+1)}{6}$$

方法 2、由于
$$C_2^2 + C_3^2 + \mathbf{L} + C_n^2 = C_{n+1}^3$$
, $C_n^2 = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}$

因此
$$\frac{2^2-2}{2}+\frac{3^2-3}{2}+\frac{3^2-3}{2}+\mathbf{L}+\frac{n^2-n}{2}=\frac{(n+1)n(n-1)}{6}$$

$$\frac{S_n - 1 - (1 + 2 + 3 + \mathbf{L} + n) + 1}{2} = \frac{(n+1)n(n-1)}{4}$$

$$S_n = \frac{2(n+1)n(n-1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6}$$

153、设等比数列 $\{a_n\}$ 的前 n 项的和是 S_n ,求证: $S_n^2 + S_{2n}^2 = S_n(S_{2n} + S_{3n})$ 证明:

设等比数列 $\{a_n\}$ 的公比为q

$$S_n S_{3n} - S_n^2 = S_n (S_{3n} - S_n) = S_n (a_{n+1} + a_{n+2} + \mathbf{L} + a_{3n}) = a_{n+1} S_n (1 + q + \mathbf{L} + q^{2n-1})$$

$$= a_1 q^n S_n (1 + q + \mathbf{L} + q^{2n-1}) = q^n S_n S_{2n}$$

$$S_{2n}^{2} - S_{n}S_{2n} = S_{2n}(S_{2n} - S_{n}) = S_{2n}(a_{n+1} + a_{n+2} + \mathbf{L} + a_{2n}) = a_{n+1}S_{n}(1 + q + \mathbf{L} + q^{n-1})$$

$$= a_1 q^n S_{2n} (1 + q + \mathbf{L} + q^{n-1}) = = q^n S_n S_{2n}$$

$$S_n S_{3n} - S_n^2 = S_{2n}^2 - S_n S_{2n}, \quad \ddagger S_n^2 + S_{2n}^2 = S_n (S_{2n} + S_{3n})$$

161、设 $\{a_n\}$, $\{b_n\}$ 是公比不相等的两个等比数列, $c_n=a_n+b_n$,

证明:数列 $\{c_n\}$ 不是等比数列。

设 $\{a_n\}$, $\{b_n\}$ 是公比分别为p和q ($p \neq q$)则

$$c_2^2 - c_1 c_3 = (a_1 p + b_1 q)^2 - (a_1 + b_1)(a_1 p^2 + b_1 q^2)$$

$$= 2a_1b_1pq - a_1b_1p^2 - a_1b_1q^2 = -a_1b_1(p-q)^2 \neq 0$$

故 c_1,c_2,c_3 不是等比数列,因此数列 $\{c_n\}$ 不是等比数列。

187、若 Sn 和 Tn 分别表示数列 $\{a_n\}$ 和 $\{b_n\}$ 的前 n 项的和,对任意正整数 n,

$$a_n = 2(n+1)$$
, Tn-3Sn=4.

(1)求数列 $\{b_n\}$ 的通项公式

(2)在平面直角坐标系内,直线 l_n 的斜率是 b_n ,且与曲线 $y=x^2$ 有且只有一个交点,

与 y 轴交于点
$$D_n$$
,记 $d_n = \frac{|D_n D_{n+1}|}{3} - (2n+7)$,求 d_n

解:
$$a_n = 2(n+1)$$

$$Sn = \frac{n(a_1 + a_n)}{2} = \frac{n(4 + 2n + 2)}{2} = n(n+3)$$

Tn-3Sn=4.

$$Tn = 3Sn + 4 = 3n(n+3) + 4 = 3n^2 + 9n + 4$$

$$\stackrel{\text{\tiny LL}}{=}$$
 $n \ge 2$ $\stackrel{\text{\tiny RL}}{=}$ 1 , $b_n = T_n - T_{n-1} = 3n^2 + 9n + 4 - 3(n-1)^2 - 9(n-1) - 4$

$$=3(2n-1)+9=6n+6$$

当
$$n = 1$$
时 $b_1 = 16$

故
$$b_n = \begin{cases} 6(n+1)(n \ge 2) \\ 16 & (n=1) \end{cases}$$

(2) 设
$$Dn$$
 (0, c_n)

则 l_n 的方程是: $y = b_n x + c_n$ 与 $y = x_n^2$ 联立消 y 得

$$x_n^2 - b_n x - c_n = 0$$

依题意
$$b_n^2 + 4c_n = 0$$
, $c_n = -\frac{b_n^2}{4} = \begin{cases} -9(n+1)^2 & (n \ge 2) \\ -64 & (n=1) \end{cases}$

$$d_1 = \frac{17}{3} - 9 = -\frac{10}{3}$$

$$\stackrel{\text{\tiny \perp}}{=}$$
 $n \ge 2$ $\stackrel{\text{\tiny $|}}{=}$ $n \ge 2$ $\stackrel{$

199、数列 $\{a_n\}$ 的首项 $a_1 = 1$,前 n 项和满足 $a_n = \frac{2S_n^2}{2S_n - 1}(n \circ 2)$ 求证: $\{\frac{1}{S_n}\}$ 是等

差数列

求 an 的通项公式

解:
$$\mathbf{Q}a_n = \frac{2S_n^2}{2S_n - 1}$$

$$\therefore \stackrel{\underline{\hookrightarrow}}{=} n \ge 2 \, \text{时} \, S_n - S_{n-1} = \frac{2S_n^2}{2S_n - 1}$$

$$(S_n - S_{n-1}) (2S_n - 1) = 2S_n^2$$

$$2S_n^2 - S_n - 2 S_n S_{n-1} + S_{n-1} = 2 S_n^2$$

$$-S_n - 2S_nS_{n-1} + S_{n-1} = 0$$

两边除以 $S_{n}S_{n-1}$ 得

$$-\frac{1}{S_{n-1}}-2+\frac{1}{S_n}=0$$
,即 $\frac{1}{S_n}-\frac{1}{S_{n-1}}=2$,故{ $\frac{1}{S_n}$ }是等差数列

206、已知等差数列 $\{an\}$ 中, $a_1 > 0$, $3a_8 = 5a_{13}$ 其前 n 项和为 Sn,则数列 $\{Sn\}$ 中

最大项是_____

解: **Q**3
$$a_8 = 5a_{13}$$

∴
$$3(a_1 + 7d) = 5(a_1 + 12d) \Rightarrow$$
 ∴ $2a_1 = -39d$, $a_1 > 0$ ix $d < 0$

$$S_n = na_1 + \frac{n(n-1)}{2}d = -\frac{39}{2}dn + \frac{1}{2}d(n^2 - n) = \frac{1}{2}dn(n - 40)$$

故当n=20时 S_n 取最大值

207、已知数列 $\{a_n\}$ 为等差数列, $S_n=25$, $S_{2n}=100$ 则 $S_{3n}=225$

解:由于 $\{a_n\}$ 是等差数列

因此 S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$ 也是等差数列

: 2
$$(S_{2n} - S_n) = S_n + (S_{3n} - S_{2n})$$

把 $S_n = 25$, $S_{2n} = 100$ 代入上式得

$$2\ (100\text{-}25)\ = 25+\ (S_{3n}\text{-}100),\ S_{3n}=225$$

208、首项是 $\frac{1}{25}$, 从第 10 项开始,每一项都比 1 大,求等差数列的公差 d 的范

韦

解:设这个等差数列为 $\{a_n\}$,公差为d

$$\text{III } a_9 = a_1 + 8d = \frac{1}{25} + 8d \le 1$$

$$a_{10} = a_1 + 9d = \frac{1}{25} + 9d > 1$$

解得
$$\frac{8}{75} < d \le \frac{3}{25}$$

255 、已知数列{a_n}中, a₁=1,a₂=2+3,a₃=4+5+6,a₄=7+8+9+10,…,则 a₁₀=<u>505</u>

解: a_1 是1个加数, a_2 是2个加数, a_3 是3个加数, ……

a₁₀最后一个加数是 1+2+3+···+10=55

a。最后一个加数是 1+2+3+···+9=45

$$a_{10} = (1+2+\cdots+55) - (1+2+\cdots+45) = \frac{55\times56}{2} - \frac{45\times46}{2} = 505$$

270、已知数列 $\{a_n\}$ 是首项为 a 且公比 q 不等于 1 的等比数列, S_n 是其前 n 项的和, a_1 , $2a_7$, $3a_4$ 成等差数列.

证明 12S₃,S₆,S₁₂-S₆成等比数列;

证明: a_1 , $2a_7$, $3a_4$ 成等差, $4a_7 = a_1 + 3a_4$

即
$$4a_1q^6 = a_1 + 3a_1q^3$$
, $4q^6 = 1 + 3q^3$, 解得 $q^3 = -\frac{1}{4}$

$$12S_{3}(S_{12}-S_{6})-S_{6}^{2}=\frac{12a_{1}(1-q^{3})}{1-q}\left[\frac{a_{1}(1-q^{12})}{1-q}-\frac{a_{1}(1-q^{6})}{1-q}\right]-\left[\frac{a_{1}(1-q^{6})}{1-q}\right]^{2}$$

$$=\frac{12a_1(1-q^6)(1-q^3)}{(1-q)^2}[12q^6-(1+q^3)]=\frac{12a_1(1-q^6)(1-q^3)}{(1-q)^2}[2+8q^3]=0$$

277、设数列 $\{a_n\}$ 是公比为 $a(a \neq 1)$,首项为b的等比数列, S_n 是前n项和,

对任 $n \in N$, (S_n, S_{n+1}) 在直线______上

解:
$$S_n = \frac{b(1-a^n)}{1-a} = \frac{b}{1-a} - \frac{ba^n}{1-a}$$
, 故 $S_n - \frac{b}{1-a} = -\frac{ba^n}{1-a}$,

$$S_{n+1} - \frac{b}{1-a} = -\frac{ba^{n+1}}{1-a} = a(S_n - \frac{b}{1-a})$$
, 因此 (S_n, S_{n+1}) 在直线 $y = a(x - \frac{b}{1-a}) + \frac{b}{1-a}$

278、设数列 $\{a_n\}$ 中, $a_1=1$, $a_2=2$, $\{a_na_{n+1}\}$ 是公比为 3 的等比数列,

解:因 $\{a_n a_{n+1}\}$ 是公比为3的等比数列,故 $a_n a_{n+1} = 2 \times 3^{n-1}$

$$a_{n+1} = \frac{2 \times 3^{n+1}}{a_n} = \frac{2 \times 3^{n+1} a_{n-1}}{2 \times 3^{n-2}} = 3a_{n-1}$$

故 $\{a_{2n-1}\}$ 和 $\{a_{2n}\}$ 都是公比为 3 的等比数列

$$b_n = a_{2n-1} + a_{2n} = 1 \times 3^{n-1} + 2 \times 3^{n-1} = 3^n$$

279、已知首项为 2 的无穷等差数列 $\{a_n\}$, 其中 a_1 , a_2 , a_4 , a_8 …成等比数列,

记 T_n 是这个等比数列的前 \mathbf{n} 项和,求 T_n ,并指出 T_n 是否是数列 $\{a_n\}$ 中的项,如果是,是第几项?

解: 设等差数列 $\{a_n\}$ 的公差为 d,则 $a_n = 2 + (n-1)d$

由 a_1 , a_2 , a_4 成等比得 $a_2^2 = a_1 a_4$

即 $(2+d)^2 = 2(2+3d)$,解得d=0,或d=2

(1) 当
$$d = 0$$
时 $a_n = 2$, $T_n = 2n$,

当 n=1 时 T_n 是 $\{a_n\}$ 中的项,

当 n≥2 时 T_n 不是 $\{a_n\}$

中的项

$$T_n = 2 + 2^2 + \mathbf{L} + 2^n = \frac{2(1 - 2^n)}{1 - 2} = 2^{n+1} - 2$$
,

由于 $T_n == 2(2^n - 1)$,因此 T_n 是 $\{a_n\}$ 中的第 $2^n - 1$ 项

289、已知
$$a_1$$
=3,且 $a_n = S_{n-1} + 2^n$,求 a_n 和 S_n

解 1:
$$a_n = S_{n-1} + 2^n$$

故
$$S_n - S_{n-1} = S_{n-1} + 2^n$$

$$S_n = 2S_{n-1} + 2^n$$

故
$$S_n = 2S_{n-1} + 2^n$$
, $S_n - n \cdot 2^n = 2[S_{n-1} - (n-1) \cdot 2^{n-1}]$

数列
$$\{S_n - n \bullet 2^n\}$$
是等比数列,首项 1,公比 2, $S_n - n \bullet 2^n = 2^{n-1}$

$$S_n = n \bullet 2^n + 2^{n-1}$$

解 2:
$$a_n = S_{n-1} + 2^n$$
,故 $S_n - S_{n-1} = S_{n-1} + 2^n$

$$S_n = 2S_{n-1} + 2^n, \frac{S_n}{2^n} = \frac{S_{n-1}}{2^{n-1}} + 1$$

数列
$$\{\frac{S_n}{2^n}\}$$
是等差数列,首项 $\frac{3}{2}$,公比差为 1, $\frac{S_n}{2^n} = \frac{3}{2} + (n-1) = n + \frac{1}{2}$

$$S_n = n \cdot 2^n + 2^{n-1}$$
 $\dot{\mathbb{R}}$ an $\dot{\mathbb{R}}$

305、已知数列
$$\{a_n\}$$
中,若 a_1 =1, $a_{n+1} = \frac{a_n}{3a_n + 2}$,求 a_n

解: 由
$$a_{n+1} = \frac{a_n}{3a_n + 2}$$
 得, $\frac{1}{a_{n+1}} = 3 + \frac{2}{a_n}$ 设 $b_n = \frac{1}{a_n}$,则 $b_{n+1} = 2b_n + 3$

$$b_{n+1} + 3 = 2(b_n + 3)$$
, $\{b_n + 3\}$ 成等比, $b_n + 3 = 4 \cdot 2^{n-1}$

306、 已知数列
$$\{a_n\}$$
中,若 $a_1=1$, $a_n=a_{n-1}+3^{n-1}$, $n\geq 2$, 求 an

$$a_n = a_1 + (a_2 - a_1) + (a_3 - a_2) + \mathbf{L} (a_n - a_{n-1}) = 1 + 3 + 3^2 + \mathbf{L} + 3^{n-1} = \frac{3^n - 1}{2}$$

307、已知数列
$$\{a_n\}$$
中, $2a_nS_n = a_n^2 + 1$,且 $a_1 = 1$,求 an

解:
$$2a_nS_n = a_n^2 + 1$$

$$2(S_n - S_{n-1})S_n = (S_n - S_{n-1})^2 + 1$$

$$S_n^2 - S_{n-1}^2 = 1$$
, $S_n^2 = 1 + (n-1) \cdot 1 = n$, 易证 an 正

故
$$S_n = \sqrt{n}$$
 , $a_n = \sqrt{n} - \sqrt{n-1}$

308、 等差数列
$$\{a_n\}$$
中, 若 $S_n = \frac{\ln(1+a_n)}{\ln 0.1}$,则 $a_{10}+a_{11}+\cdots+a_{99}=$

解; 由
$$a_1 = \log_{0.1}(1 + a_1)$$
 得 $a_1 == 0$

$$2a_1 + d = \log_{0.1}(1 + a_2)$$
, $\theta = \log_{0.1}(1 + d)$ $\theta = 0$

故
$$a_n = 0$$
故原式=0

309、 已知数列
$$\{a_n\}$$
中, a_1 =0.5, $a_1 + a_2 + a_3 + \mathbf{L} + a_n = n^2 a_n$,求 an?

解:
$$a_1 + a_2 + a_3 + \mathbf{L} + a_n = n^2 a_n$$

则
$$a_1 + a_2 + a_3 + \mathbf{L} + a_{n-1} = (n-1)^2 a_{n-1}$$

相減得
$$a_n = n^2 a_n - (n-1)^2 a_{n-1}$$
, $(n^2 - 1)a_n = (n-1)^2 a_{n-1}$, $\frac{a_n}{a_{n-1}} = \frac{n-1}{n+1}$

$$a_n = a_1 \bullet \frac{a_2}{a_1} \bullet \frac{a_3}{a_2} \bullet \mathbf{L} \bullet \frac{a_n}{a_{n-1}} = \frac{1}{2} \bullet \frac{1}{3} \bullet \frac{2}{4} \bullet \mathbf{L} \bullet \frac{n-1}{n+1} = \frac{1}{n(n+1)}$$

310、等差数列
$$\{a_n\}$$
中,若 a_3 、 a_5 是方程 $x^2-6x-1=0$ 的两根,

则 $a_7+a_8+a_9+a_{10}+a_{11}=$ _____

解:
$$a_3 = 3 - \sqrt{10}$$
, $a_5 = 3 + \sqrt{10}$ 或 $a_3 = 3 + \sqrt{10}$, $a_5 = 3 - \sqrt{10}$

(1)
$$\stackrel{\text{\tiny \perp}}{=} a_3 = 3 - \sqrt{10}$$
, $a_5 = 3 + \sqrt{10}$ $\stackrel{\text{\tiny $| f|}}{=} d = \sqrt{10}$, $a_9 = 3 + 5\sqrt{10}$,

原式=
$$5a_9$$
= $15+25\sqrt{10}$

(2)
$$\stackrel{\text{def}}{=} a_3 = 3 + \sqrt{10}$$
, $a_5 = 3 - \sqrt{10}$ Find $d = -\sqrt{10}$, $a_9 = 3 - 5\sqrt{10}$,

原式=
$$5a_9$$
= $15-25\sqrt{10}$

311、等比数列 $\{a_n\}$ 中,若 S_n =20, S_{2n} =80,则 S_{3n} =____

解:
$$S_n$$
, $S_{2n}-S_n$, $S_{3n}-S_{2n}$ 成等比

$$(S_{2n} - S_n)^2 = S_n (S_{3n} - S_{2n})$$

$$60^2 = 20 \ (S_{3n} - 80), \ S_{3n} = 260$$

312、 等比数列 $\{a_n\}$ 中,若 $a_n>0$, $a_3a_8+a_4a_7=18$,则

 $log_3a_1 + log_3a_2 + log_3a_3 + \cdots + log_3a_{10} = \underline{\hspace{1cm}}$

解:
$$a_3 a_8 + a_4 a_7 = 18$$
, $2a_1 a_{10} = 18$, $a_1 a_{10} = 9$, 原式 = $\log_3 9^5 = 10$

313、 等比数列 $\{a_n\}$ 中,若对 $n \in N_+$ 都有 $a_n = a_{n+1} + a_{n+2}$,则q =_____

解:
$$a_n = a_{n+1} + a_{n+2}$$
 两边除以 a_n

得
$$1 = q + q^2$$
,解得 $q = \frac{-1 \pm \sqrt{5}}{2}$

314、已知数列 $\{\frac{n}{2^n}\}$,求前 n 项和 Sn?

解:
$$S_n = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \mathbf{L} + \frac{n}{2^n}$$

 $\frac{1}{2}S_n = \frac{1}{2^2} + \frac{2}{2^3} + \mathbf{L} + \frac{n-1}{2^n} + \frac{n}{2^{n+1}}$
相減得 $\frac{1}{2}S_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \mathbf{L} + \frac{1}{2^n} - \frac{n}{2^{n+1}} =$
 $= 1 - (\frac{1}{2})^n - \frac{n}{2^{n+1}} = = 1 - \frac{1}{2^{n+1}}(2+n)$, 故 $S_n = 2 - \frac{1}{2^n}(2+n)$

317、

计算机执行以下程序

- (1) 初始值 x=3,s=0
- (2) x=x+2
- (3) s=s+x
- (4) 如 s>=2003,则进行(5),否则从(2)继续进行
- (5) 打印 x
- (6) Stop

那么由语句(5)打印出的数值为____

解: 在这个循环语句中

设 X 的值组成的数列为 $\{x_n\}$, s 的值组成的数列为 $\{s_n\}$, n=0,1,2,3,……

则 $\{x_n\}$ 是以2公差的等差数列, $x_0=3$, $x_n=3+2$ n

$$s_0 = 0$$
, $s_n = s_{n-1} + x_n$ (n $\geqslant 1$), $s_n = \begin{cases} 0 & (n = 0) \\ n(n+4) & (n \ge 1) \end{cases}$

$$rightharpoonup n(n+4) \ge 2003$$
, $(n+2)^2 \ge 2007$, $n+2=45$, $n=43$

$$x_n = 3 + 2 \times 43 = 89$$
 故打印出的数值为 89

329、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是 24 与 30, 若此数列的最后一项比第 10 项大 10,则这个数列共有多少项?

解:设公差为d,项数n

$$\mathbb{N}\frac{n}{2} \bullet d = 30 - 24 = 6$$
, $nd = 12$ (1)

最后一项比第10大10

$$(n-10)d = 10 (2)$$

由(1)(2)得n = 60

330、七个实数排成一列,奇数项成等差数列,偶数项成等比数列,且奇数项之和与偶数项积的差为42,首项,末项,中间项之和为27,求中间项.

解: 设此数列为
$$a-3d$$
, $\frac{b}{q}$, $a-d$, b , $a+d$, bq , $a+3d$

因奇数项之和与偶数项积的差为42,

故 4a-b³=42

a-3d+b+a+3d=27

解得b=2

392、等差数列 $\{a_n\}$ (非常数列)中,第i,j,k项成等比数列,求证公比 $q=\frac{j-k}{i-j}$

证明:
$$q = \frac{a_j}{a_i} = \frac{-a_k}{-a_j} = \frac{a_j - a_k}{a_i - a_j} = \frac{(j - k)d}{(i - j)d} = \frac{j - k}{i - j}$$

406、在数列 $\{a_n\}$ 中,如果存在非零常数 t,使得 $a_{n+t}=a_n$ 对于n**Î** N_+ 均成立,那么就

称数列为 $\{a_n\}$ 周期数列,其中 t 叫数列的周期。已知数列 $\{x_n\}$ 满足

 $x_{n+1} = |x_n - x_{n-1}| (n^3 2, n\hat{I} N_+),$ 如果 $x_1 = 1, x_2 = a(a^1 0),$ 当数列的周期最小时,该数

列前 2005 项的和是 ()(竞赛)

A.668 B.669 C.1336 D.1337

解: (1) 若周期为 1, X₂=a= X₁=1

数列为, 1, 1, 0, 1, 1, 0, ……周期为3, 且周期不可能为1

(2) 若周期为 2, $X_3 = |X_2 - X_1| = |a - 1| = X_1 = 1$, 故得 a = 2 或 0 (舍)

但是, 当 a=2 时

数列为: 1, 2, 1, 1, 0, ……周期不为2

可见数列的周期最小值为3,此时数列为

1, 1, 0, 1, 1, 0,

因为 $2005=3\times668+1$,一个周期三项的和=1+1+0=2

所以, 该数列前 2005 项的和是项的和=2×668+1=1337

420、等差数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $a_1>0$,若存在自然数 m ≥ 3 ,使得

 $a_m = S_m$ 当 n>m 时 S_n 与 a_n 的大小关系是(精采题)

A. $S_n < a_n$ B. $S_n \le a_n$ C. $S_n > a_n$ D. $S_n \le a_n$

解: (1) 设公差为 d

若 d=0,则 $S_m = ma_1 > a_1 = a_m$ 舍

若 d>0,则 $\{a_n\}$ 正项递增数列, $S_m = a_1 + a_2 + \mathbf{L} a_m > a_m$ 舍

故 d<0,则 $\{a_n\}$ 递减数列,"直线 $a_n = g(n)$ "下降(从左到右)

,"抛物线 $S_n = f(n)$ " 开口向下,它们有两个交点 $(1,a_1)$ 和 (m,a_m)

故当n > m时 $S_n < a_n$

483、在等差数列 $\{a_n\}$ 中, $3a_3=7a_7$,且 $a_1>0$, S_n 是 $\{a_n\}$ 前 n 项和,若 S_n 取得

最大值,求 n. (数列)

解 1: 因 $3a_3 = 7a_7$,故 $3(a_1 + 2d) = 7(a_1 + 6d)$

$$4a_1 = -36d$$
, $a_1 = -9d$, $\frac{a_1}{d} = -9$

$$\operatorname{Sn} = na_1 + \frac{n(n-1)d}{2} = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$$

对称轴
$$n = \frac{\frac{d}{2} - a_1}{d} = \frac{1}{2} - \frac{a_1}{d} = 9\frac{1}{2}$$

因
$$a_1 > 0$$
, $a_1 = -9d$,故 $d < 0$

于是知二次函数 $\operatorname{Sn} = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$ 图象开口向下

因为 $n \in N_+$, 因此当n = 9或n = 10时 Sn 取得最大值

解 2 (做填空选择题): 因 $3a_3 = 7a_7$, 故 $3(a_1 + 2d) = 7(a_1 + 6d)$

$$4a_1 = -36d$$
, $a_1 + 9d = 0$, $2a_1 + 18d = 0$

因此
$$a_1 + a_{19} = 0$$
, $S_{19} = 0$

由抛物线
$$\operatorname{Sn} = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$$
 的图象过

$$(0, 0), (1, a_1), (19, 0)$$
 注意到 $a_1 > 0$

可知对称轴
$$n = \frac{0+19}{2} = 9\frac{1}{2}$$
,开口向下

因为 $n \in N_+$, 因此当n = 9或n = 10时 Sn 取得最大值

解 3: 因
$$3a_3 = 7a_7$$
,故 $3(a_1 + 2d) = 7(a_1 + 6d)$

$$4a_1 = -36d$$
, $a_1 + 9d = 0$, $\boxtimes \& a_{10} = 0$

又
$$a_1 > 0$$
,故 $a_n = f(n)$ 递减

于是
$$a_1 > a_2 > \mathbf{L} > a_9 > a_{10} = 0 > a_{11} > a_{12} > \mathbf{L}$$

因此当n=9或n=10时 Sn 取得最大值

484、已知数列
$$\{a_n\}$$
, $S_{n+1} = 4a_n + 2$, $a_1 = 1$

(1)设
$$b_n = a_{n+1} - 2a_n$$
, 求证: $\{b_n\}$ 是等比数列

(2) 设
$$c_n = \frac{a_n}{2^n}$$
, $\{c_n\}$ 是等差数列;

(3) 求数列 $\{a_n\}$ 的通项公式和前n项和公式. (数列)

解: 在数列
$$\{a_n\}$$
中,当 $n \ge 2$ 时

$$a_{n+1} = S_{n+1} - S_n = 4a_n + 2 - 4a_{n-1} - 2 = 4a_n - 4a_{n-1}$$

故
$$a_{n+1} - 2a_n = 2a_n - 4a_{n-1} = 2(a_n - 2a_{n-1})$$

由于
$$b_n = a_{n+1} - 2a_n$$
,因此 $b_n = 2b_{n-1}$ ($n \ge 2$)

所以 $\{b_n\}$ 是等比数列,公比为 2

(2)
$$\boxtimes a_1 + a_2 = 4a_1 + 2$$
, $a_1 = 1 \boxtimes a_2 = 3a_1 + 2 = 5$

因为
$$\{b_n\}$$
是等比数列,公比为 2, $b_1 = a_2 - 2a_1 = 5 - 2 = 3$

所以
$$b_n = 3 \cdot 2^{n-1}$$
,于是 $a_{n+1} - 2a_n = 3 \cdot 2^{n-1}$, $a_{n+1} = 2a_n + 3 \cdot 2^{n-1}$

$$c_{n+1} - c_n = \frac{a_{n+1}}{2^{n+1}} - \frac{a_n}{2^n} = \frac{2a_n + 3 \cdot 2^{n-1}}{2^{n+1}} - \frac{2a_n}{2^{n+1}} = \frac{3 \cdot 2^{n-1}}{2^{n+1}} = \frac{3}{4}$$

故 $\{c_n\}$ 是等差数列,公差为 $\frac{3}{4}$

(3) 由 (2) 得
$$c_n = c_1 + \frac{3}{4}(n-1) = \frac{1}{2} + \frac{3}{4}(n-1) = \frac{3}{4}n - \frac{1}{4}$$

因
$$c_n = \frac{a_n}{2^n}$$
,故 $a_n = 2^n c_n = (\frac{3}{4}n - \frac{1}{4}) \bullet 2^n = (3n - 1) \bullet 2^{n-2}$

当n≥2时

$$S_n = 4a_{n-1} + 2 = 4 \bullet (3n - 4) \bullet 2^{n-3} + 2 = (3n - 4) \bullet 2^{n-1} + 2$$

当
$$n=1$$
时 $S_1=a_1=1$ 上式也成立

综上
$$S_n = (3n-4) \bullet 2^{n-1} + 2 \ (n \in N_+)$$

521、数列 $\{a_n\}$ 是公差不为零的等差数列,且 a_7 , a_{10} , a_{15} 是一等比数列 $\{bn\}$ 的连续三项,若该等比数列的首项为 b_1 =3,则 bn 等于多少?(数列)

解 1: 设等差公差为 d,

因为 a_7 , a_{10} , a_{15} 是一等比数列 $\{bn\}$ 的连续三项所以 $a_{10}^2 = a_7 a_{15}$

$$(a_1 + 9d)^2 = (a_1 + 6d) (a_1 + 14d)$$

$$a_1^2 + 18a_1d + 81d^2 = a_1^2 + 20a_1d + 84d^2$$

$$2a_1d + 3d^2 = 0$$
,因为 $d \neq 0$,所以 $2a_1 + 3d = 0$, $d = -\frac{2}{3}a_1$

等比数列{bn}的公比
$$q = \frac{a_{10}}{a_7} = \frac{a_1 + 9d}{a_1 + 6d} = \frac{a_1 - 6a_1}{a_1 - 4a_1} = \frac{5}{3}$$
,故 bn=3•($\frac{5}{3}$)ⁿ⁻¹

解 2: 设 $\{a_n\}$ 公差为d, $\{bn\}$ 公比q,则

$$q = \frac{a_{10}}{a_7} = \frac{a_{15}}{a_{10}} = \frac{a_{15} - a_{10}}{a_{10} - a_7} = \frac{5d}{3d} = \frac{5}{3}$$
, $\uparrow \neq bn = 3 \bullet (\frac{5}{3})^{n-1}$

535、等差数列{
$$a_n$$
}, $S_m = a$, $S_{n-m} + b = S_n$ (n>m), 求 S_n (数列)

解:前m项和 $S_m = a$

后m项和 $S_n - S_{n-m} = b$

故
$$m(a_1 + a_n) = a + b$$
,所以 $a_1 + a_n = \frac{a + b}{m}$

$$S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(a+b)}{2m}$$

556、这个数列:2,3,2,3,2,3,2,3, ……

求这个数列的 a_n (数列)

解:在数轴上2和3与它们的平均数的距离都是 $\frac{1}{2}$

$$2 = \frac{5}{2} - \frac{1}{2}$$
, $3 = \frac{5}{2} + \frac{1}{2}$

于是此数列的通项公式是 $a_n = \frac{5}{2} + (-1)^n \cdot \frac{1}{2}$

讲解 2: 把数列:2,3,2,3,2,3,2,3, ……的每个数都减去 2与3的平均数 $\frac{5}{2}$ 得

$$-\frac{1}{2},\frac{1}{2},-\frac{1}{2},\frac{1}{2},-\frac{1}{2}$$
,上 于是 $a_n = \frac{5}{2} + (-1)^n \bullet \frac{1}{2}$

565、公差不为零的等差数列第二、三、六项依次成等比数列,则公比=____(数列)

解 1: 设等差数列 $\{a_n\}$ 的公差为 d, $d \neq 0$

因为第二、三、六成等比数列

所以
$$(a_1+2d)^2 = (a_1+d)(a_1+5d)$$
, $-2a_1d = d^2$, $d \neq 0$

故
$$-2a_1=d$$

解 2: 公比=
$$\frac{a_3}{a_2} = \frac{a_6}{a_3} = \frac{a_6 - a_3}{a_3 - a_2} = \frac{3d}{d} = 3$$

575,
$$f(x) = \log_a x(a > 0, a \ne 1)$$

若 $2, f(a_1), f(a_2), L, f(a_n), 2n+4$ 成等差数列 (数列)

(1)求 $\{a_n\}$ (2) $b_n = a_n \lg a_n \perp b_n$ 每一项都大于前一项,求a的取值范围

解: (1) 设数列 2, $f(a_1)$, $f(a_2)$, L, $f(a_n)$, 2n+4 的公差为 d

$$f(a_n) = 2 + nd \ (1) \ 2n + 4 = 2 + (n+1)d \ (2)$$

由②得
$$d = 2$$
代入①得 $f(a_n) = 2 + 2n$

$$\mathbb{E}[\log_a a_n = 2 + 2n, \ a_n = a^{2n+2}]$$

(2)
$$b_n = a_n \lg a_n = (2n+2)a^{2n+2} \lg a$$

$$b_{n+1} - b_n = (2n+4)a^{2n+4} \lg a - (2n+2)a^{2n+2} \lg a$$

$$=(a^{2n+2} \lg a)[a^2(2n+4)-2n-2]>0$$
对 $n \in N_+$ 恒成立

 1° 当 a > 1 时则 $\lg a > 0$

故只要 $a^2(2n+4)-2n-2>0$ 对 $n\in N_+$ 恒成立

于是
$$a^2 > \frac{2n+2}{2n+4} = 1 - \frac{2}{2n+4}$$
③对 $n \in N_+$ 恒成立

因为
$$1-\frac{2}{2n+2}$$
<1故当 $a>1$ 时③恒成立

 2° 当a<1时,则 $\lg a$ <0

故只要 $a^2(2n+4)-2n-2<0$ 对 $n\in N_+$ 恒成立

于是
$$a^2 < \frac{2n+2}{2n+4} = 1 - \frac{2}{2n+4}$$
 对 $n \in N_+$ 恒成立

因为
$$1-\frac{2}{2n+4}$$
最小= $\frac{2}{3}$ 故 $a^2 < \frac{2}{3}$,此时 $0 < a < \frac{\sqrt{6}}{3}$,综上 $a > 1$ 或 $0 < a < \frac{\sqrt{6}}{3}$

601、数列 $\{a_n\}$ 中, $a_n = \frac{n - \sqrt{97}}{n - \sqrt{98}}$,求 $\{a_n\}$ 可能的最大最小项(数列)

$$\Re: \quad a_n = \frac{n - \sqrt{97}}{n - \sqrt{98}} = \frac{n - \sqrt{98} + \sqrt{98} - \sqrt{97}}{n - \sqrt{98}} = 1 + \frac{\sqrt{98} - \sqrt{97}}{n - \sqrt{98}}$$

当 $n \le 9$ 时, $a_n < 1$ 且 a_n 递减, $a_9 \le a_n < 1$

当 $n \ge 10$ 时, $a_n > 1$ 且 a_n 递减, $1 < a_n \le a_{10}$, 故最大项 a_{10} ,最小项 a_0

- 618、已知函数 $f(x) = -x^3 + ax$ 在 (0,1) 上是增函数。
- (1) 求实数 a 的取值集合 A
- (2)当a中取 A 中最小值时,定义数列 $\{a_n\}$ 满足: $2a_{n+1}=f(a_n)$ 且 $a_1=b\in(0,1)$,b为常数,试比较 a_{n+1} 与 a_n 的大小
- (3)在(2)的条件下,问是否存在正实数c使 $0 < a_n c < 1$ 对一切 $n \in N_+$ 恒成立? (函数) (数列) (不等式)

解: $(1) f'(x) = -3x^2 + a \ge 0$ 对 $x \in (0,1)$ 恒成立

故 $f(1) = -3 + a \ge 0$,即 $a \ge 3$,集合 $A = [3,+\infty)$

(2) 集合 A = [3,+∞) 中的最小值是 3

$$\stackrel{\text{"}}{=} a = 3$$
 时, $f(x) = -x^3 + 3x$, $a_{n+1} = \frac{1}{2} f(a_n) = -\frac{1}{2} a_n^3 + \frac{3}{2} a_n$

$$a_{n+1} - a_n = -\frac{1}{2}a_n^3 + \frac{1}{2}a_n = -\frac{1}{2}a_n(a_n + 1)(a_n - 1)$$
 1

下面用数学归纳法先证明 $a_n \in (0,1)$

 $a_1 = b \in (0,1)$, 假设 $a_k \in (0,1)$

$$a_{k+1} = -\frac{1}{2}a_k^3 + \frac{3}{2}a_k = -\frac{1}{2}a_k(a_k^2 - 3) > 0$$

$$a_{k+1} - 1 = -\frac{1}{2}a_k^3 + \frac{3}{2}a_k - 1 = -\frac{1}{2}(a_k^3 - 3a_k + 2) = -\frac{1}{2}(a_k - 1)^2(a_k + 2) < 0$$

于是 $a_{k+1} \in (0,1)$

由数学归纳法原理得当 $n \in N_+$ 时 $a_n \in (0,1)$ 总成立

于是
$$-\frac{1}{2}a_n(a_n+1)(a_n-1)>0$$
,由①得, $a_{n+1}>a_n$

(3) 由(2)知 $a_n \in (0,1)$, $\{a_n\}$ 递增

于是 $a_1 \le a_n < 1$,即 $b \le a_n < 1$,因此取0 < c < b < 1, $0 < b - c < a_n < 1 - c < 1$ 对一切 $n \in N_+$ 恒成立。

626、已知
$$a_n^2 + (a_{n+1} + 2)a_n + 2a_{n+1} + 1 = 0$$

求证: (1)
$$-1 < a_n < 0$$
 (2) $a_{2n} > a_{2n-1}$ (3) $\{a_{2n-1}\}$ 递增(数列) (高考难题)

证明: (1)
$$a_n^2 + (a_{n+1} + 2)a_n + 2a_{n+1} + 1 = 0$$
,

$$(a_n + 2)a_{n+1} = -(a_n + 1)^2$$

由于
$$a_1 = -\frac{1}{2} \in (-1,0)$$

于是
$$a_2 = -\frac{(a_1+1)^2}{a_1+2} < 0$$
,

$$a_2 + 1 = 1 - \frac{(a_1 + 1)^2}{a_1 + 2} = \frac{a_1 + 2 - (a_1 + 1)^2}{a_1 + 2} = \frac{1 - a_1(a_1 + 1)}{a_1 + 2} > 0$$
, $a_2 > -1$

假设 $a_k \in (-1,0)$,用上面的方法可得 $a_{k+1} \in (-1,0)$

由数学归纳法原理得 $a_n \in (-1,0)$

(2)
$$a_{n+1} = -\frac{(a_n + 1)^2}{a_n + 2} = -\frac{(a_n + 2 - 1)^2}{a_n + 2} = -\frac{(a_n + 2)^2 - 2(a_n + 2) + 1}{a_n + 2}$$

$$= -(a_n + 2 + \frac{1}{a_n + 2}) + 2, \quad a_{n+1} + 2 = -(a_n + 2 + \frac{1}{a_n + 2}) + 4$$

设
$$b_n = a_n + 2$$
,于是 $b_1 = a_1 + 2 = \frac{3}{2}$, $b_{n+1} = 4 - (b_n + \frac{1}{b_n})$

由(1)知1
$$<$$
 b_n $<$ 2,函数 $f(x) = x + \frac{1}{x}$ 在 $x \in (1,2)$ 上是递增

$$b_2 = 4 - (b_1 + \frac{1}{b_2}) = \frac{11}{6}$$

曲
$$b_2 > b_1$$
得, $b_2 + \frac{1}{b_2} > b_1 + \frac{1}{b_1}$, $4 - (b_2 + \frac{1}{b_2}) < 4 - (b_1 + \frac{1}{b_1})$,

故
$$b_3 < b_2$$
得, $b_3 + \frac{1}{b_3} < b_2 + \frac{1}{b_2}$, $4 - (b_3 + \frac{1}{b_3}) > 4 - (b_2 + \frac{1}{b_2})$

于是 $b_4 > b_3$

假设 $b_{2k} > b_{2k-1}$,用上面的方法可得 $b_{2k+2} > b_{2k+1}$

由数学归纳法原理得 $b_{2n} > b_{2n-1}$ 恒成立,故 $a_{2n} > a_{2n-1}$ 恒成立

(3)
$$b_{2n+1} - b_{2n-1} = 4 - (b_{2n} + \frac{1}{b_{2n}}) - b_{2n-1} = 4 - [4 - (b_{2n-1} + \frac{1}{b_{2n-1}})] - \frac{1}{b_{2n}} - b_{2n-1}$$

$$=\frac{1}{b_{2n-1}} - \frac{1}{b_{2n}} > 0 \ (\pm \ (2))$$

所以
$$b_{2n-1} - b_{2n-1} > 0$$
, $\{b_{2n-1}\}$ 递增,于是 $\{a_{2n-1}\}$ 递增

638、等差数列 $\{an\}$ 的前 n 项和为 Sn,另 $S_{13}<0$, $S_{12}>0$ 则此项数列中绝对值最小的项为第()项。(数列)

讲解: $S_{13} = 13a_7 < 0 \Rightarrow a_7 < 0$,

$$S_{12} = 6(a_1 + a_{12}) = 6(a_6 + a_7) > 0 \Rightarrow a_6 + a_7 > 0$$

于是
$$a_6 > -a_7 > 0$$

在
$$a_6 + a_7 > 0$$
中, $a_6 > 0$, $a_7 < 0$

根据异号两数相加取绝对值较大的加数的符号

所以
$$|a_6| > |a_7|$$

因为
$$d = a_7 - a_6 < 0$$

所以此等差数递减,

因此在 $\{an\}$ 中, a_6 是最小正项, a_7 是最大负项

故,此项数列中绝对值最小的项为第7项。

675、等比数列 $\{an\}$ 中,公比q=2, $log_2a_1+log_2a_2+\cdots+log_2a_{10}=25$,则

$$a_1+a_2+\cdots+a_{10}=$$
_____(数列)

解:
$$\log_2(a_1a_2 \bullet \mathbf{L} \bullet a_{10}) = 25$$

故
$$a_1a_2$$
 • L • $a_{10}=2^{25}$

因
$$a_1 a_2 \bullet \mathbf{L} \bullet a_{10} = a_1^{10} \bullet q^{1+2+\mathbf{L}+9} = a_1^{10} \bullet 2^{45}$$

故
$$a_1^{10} \bullet 2^{45} = 2^{25}$$
, $a_1^{10} = 2^{-20}$, $a_1 = \pm 2^{-2} = \pm \frac{1}{4}$,

由于
$$a_1, a_2, \mathbf{L}, a_{10}$$
全正,因此 $a_1 = \frac{1}{4}$

于是
$$a_1 + a_2 + \mathbf{L} + a_{10} = \frac{a_1(1 - q^{10})}{1 - q} = \frac{\frac{1}{4}(1 - 2^{10})}{1 - 2} = \frac{1023}{4}$$

684、已知四个正数成等比数列,其积为16,中间两个数的和为5,求公比的值.

解: 设四个数为
$$\frac{a}{t^3}$$
, $\frac{a}{t}$, at , at^3

因积为 16, 故
$$a^4 = 16$$
, 又 $a > 0$, 故 $a = 2$

因中间两个数的和为 5 , 故
$$\frac{2}{t} + 2t = 5$$
 , $t = 2$ 或 $t = \frac{1}{2}$

公比
$$t^2 = 4$$
,或 $t^2 = \frac{1}{4}$

694、在等差数列
$$\{an\}$$
中, $a_{n}=\frac{2n^{2}-pn}{n+q}$,则

A. p+2q=0 B.
$$q^2 + pq = 0$$
 C. $2q^2 + pq = 0$ D. p+q=0

解:
$$a_n = \frac{2n^2 - pn}{n+q} = \frac{2(n^2 - q^2) - (pn + pq) + 2q^2 + pq}{n+q} = 2(n-q) - p + \frac{2q^2 + pq}{n+q}$$

由于 $a_n = an + b$ 于是 $2q^2 + pq = 0$, 选 C

697、已知 $\{xn\}$ 为等差数列, x_1, x_2 是方程 $x^2 - ax + 2 = 0$ 两实根,且 $x_3 + x_5 = 8$,求实数a的值.

设公差为
$$d$$
,则 $2x_1 + d = a$ (1), $x_1(x_1 + d) = 2$ (2), $2x_1 + 6d = 8$ (3)

由 (1) (3) 得
$$d = \frac{8-a}{4}$$
, $x_1 = a = \frac{5a-8}{8}$ 代入 (2) 得

$$\frac{5a-8}{8} \bullet \frac{3a+8}{8} = 2 , \quad a = \frac{-8 \pm 8\sqrt{46}}{15}$$

740、.在 $\frac{1}{n}$, n+1之间插入 n 个正数,使这 n+2 个正数依次构成等比数列(n 属于

N*),求所插入的 n 个正数之积 Tn.

解:设插入的 n 个正数后构成的等比数列有 n+2 项,记为 $\{a_n\}$

$$T_n = a_2 a_3 a_4 \mathbf{L} a_{n+1}, \quad T_n^2 = (a_2 a_{n+1})(a_3 a_n)(a_4 a_{n-1}) \mathbf{L} (a_{n+1} a_2) = (\frac{n+1}{n})^n$$

$$T_n = \left(\frac{n+1}{n}\right)^{\frac{n}{2}}$$

757、(1)如何通过递推公式求出等差数列通项公式?

解:设等差数列 $\{a_n\}$ 的公差为d,则 $a_n-a_{n-1}=d$

于是
$$a_n = a_1 + (a_2 - a_1) + (a_3 - a_2) + \mathbf{L} + (a_n - a_{n-1}) = a_1 + (n-1)d$$

(2) 如何根据复杂的前 N 项和公式求出通项公式?

(3) 公式
$$a_n = a_1 + (a_2 - a_1) + (a_3 - a_2) + \mathbf{L} + (a_n - a_{n-1})$$
 与公式 $a_n = S_n - S_{n-1}$ 是同一回事

769、若一个等比数列的任何一项都等于它以后各项的和的k 倍,则k 的取值范围是_____

解:设无穷等比数列 $\{a_n\}$ 的公比为q,则-1 < q < 1且 $q \neq 0$

依题意
$$a_n = \frac{ka_{n+1}}{1-q}$$
, $1 = \frac{kq}{1-q}$, $k = \frac{1-q}{q} = \frac{1}{q} - 1 \in (-\infty, -2)$ **U** $(0, +\infty)$

785、已知等比数列中,S₃₀=13S₁₀,S₁₀+S₃₀=140,则 S₂₀=_____

解: 由 $S_{30}=13S_{10}$, $S_{10}+S_{30}=14$ 解得 $S_{10}=1$, $S_{30}=13$

因为 S_{10} , S_{20} - S_{10} , S_{30} - S_{20} 也是等比数列

所以
$$(S_{20}-S_{10})^2=S_{10}$$
 $(S_{30}-S_{20})$

于是 $(S_{20}-1)^2 = 13-S_{20}$

下面自己动手了

786、等比数列 $\{a_n\}$ 中,已知前 n 项和为 S_n ,已知 $a_3=2S_1+1$, $a_4=2S_3+1$,则公比 q 的值为_____

解: 把 a₃=2S₁+1, a₄=2S₃+1 它们直译成

a₁与 q 的方程就行了,这种思想叫做基本量思想

788、等差数列 $\{a_n\}$ 中, $\frac{a_{21}}{a_{20}}$ <-1,若前n项和 S_n 有最大值,则比较 S_1 与 S_{39} 的大

小。

解 1:
$$S_{39} - S_1 = \frac{38(a_2 + a_{39})}{2} = 19(a_{20} + a_{21})$$

因
$$\frac{a_{21}}{a_{20}} < -1$$
得,公差 $d \neq 0$, $S_n = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$ 是 n 的二次函数,

因 S_n 有最大值,故d<0,于是 $a_{21}<0< a_{20}$

曲
$$\frac{a_{21}}{a_{20}}$$
<-1,得 a_{21} <- a_{20} , a_{20} + a_{21} <0

于是 $S_{39} - S_1 < 0$, $S_{39} < S_1$

解 2: 因
$$\frac{a_{21}}{a_{20}}$$
 < -1得, a_{20} 与 a_{21} 异号,公差 $d = a_{21} - a_{20} \neq 0$,

故
$$S_n = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$$
 是 n 的二次函数,

因 S_n 有最大值

故二次函数图象开口向下,d < 0,于是 $a_{21} < 0 < a_{20}$

曲
$$\frac{a_{21}}{a_{20}}$$
<-1,得 a_{21} <- a_{20} , a_{20} + a_{21} <0, a_{20} + a_{20} >0

于是
$$a_1 + a_{40} < 0$$
, $a_1 + a_{39} > 0$ 故 $S_{40} < 0$, $S_{39} > 0$

设二次函数 $f(n) = S_n$ 与横轴有两个交点 (0,0) 和 (a,0)

则
$$a \in (39,40)$$
, 对称轴 $n = \frac{a}{2} \in (19.5,20)$

$$(\frac{a}{2}-1)-(39-\frac{a}{2})=a-40<0$$

于是 $(1,S_1)$ 比 $(39,S_{39})$ 更靠近对称轴,故 $S_1 > S_{39}$

789、在等比数列{a_n}中,已知 Sn=48,S2n=60,求这个数列的前 3n 项的和 S_{3n}

解:
$$S_n$$
, $S_{2n}-S_n$, $S_{3n}-S_{2n}$ 成等比

$$(S_{2n} - S_n)^2 = S_n (S_{3n} - S_{2n})$$

$$12^2 = 48(S_{3n} - 60)$$
, $S_{3n} = 63$

794、设正项等比数列 $\{a_n\}$ 的首项 $a_1 = \frac{1}{2}$,前 n 项和为 Sn,且 2^{10} S₃₀- $(2^{10}+1)$ S₂₀+S₁₀=0。

- (1) 求数列的通项
- (2) 求{nS_n}的前 n 项和 T_n。(数列)

解: (1)
$$2^{10}S_{30}$$
-(2^{10} +1) S_{20} + S_{10} =0

$$2^{10}S_{30}\text{-}2^{10}\ S_{20}\text{-}S_{20}\text{+}S_{10}\!\!=\!\!0$$

$$2^{10} (S_{30} - S_{20}) = S_{20} - S_{10}, \frac{S_{30} - S_{20}}{S_{20} - S_{10}} = \frac{1}{2^{10}},$$

又因为
$$\frac{S_{30}-S_{20}}{S_{20}-S_{10}} = \frac{a_{21}+a_{22}+\mathbf{L}+a_{30}}{a_{11}+a_{12}+\mathbf{L}+a_{20}} = \frac{q^{10}(a_{11}+a_{12}+\mathbf{L}+a_{20})}{a_{11}+a_{12}+\mathbf{L}+a_{20}} = q^{10}$$

于是有
$$q^{10} = \frac{1}{2^{10}}, \quad q = \frac{1}{2}, \quad a_n = \frac{1}{2} \bullet (\frac{1}{2})^{n-1} = (\frac{1}{2})^n$$

(2)
$$S_n = \frac{\frac{1}{2}[1 - (\frac{1}{2})^n]}{1 - \frac{1}{2}} = 1 - (\frac{1}{2})^n$$

$$nS_n = n[1 - (\frac{1}{2})^n]$$

$$T_n = 1[1 - (\frac{1}{2})^1] + 2[1 - (\frac{1}{2})^1] + \mathbf{L} + n[1 - (\frac{1}{2})^n]$$

$$T_n = \frac{n(n+1)}{2} - \left[1(\frac{1}{2})^1 + 2(\frac{1}{2})^2 + \mathbf{L} + n(\frac{1}{2})^n\right]$$

设
$$M = 1(\frac{1}{2})^1 + 2(\frac{1}{2})^2 + \mathbf{L} + n(\frac{1}{2})^n$$
①则

$$\frac{1}{2}M = 1(\frac{1}{2})^2 + 2(\frac{1}{2})^3 + \mathbf{L} + n(\frac{1}{2})^{n+1} ②$$

①-②得

$$\frac{1}{2}M = (\frac{1}{2}) + (\frac{1}{2})^2 + (\frac{1}{2})^3 + \mathbf{L} + (\frac{1}{2})^n - n(\frac{1}{2})^{n+1} = 1 - (\frac{1}{2})^n - n(\frac{1}{2})^{n+1} = 1 - (\frac{1}{2})^{n+1} (2+n)$$

$$M = 2 - (\frac{1}{2})^n (2+n), \quad T_n = \frac{n(n+1)}{2} - 2 + (\frac{1}{2})^n (2+n)$$

797、设数列 $\{a_n\}$ 的前 n 项和 $S_n=an^2+bn$ $(n \in N_+)$ 若 a $<0,n \ge 2$,则有

 $A.na_n < na_1 < S_n$ $B.na_n < S_n < na_1$ $C.na_1 < S_n < na_n$ $D.S_n < na_n < na_1$ (数列)

解 1: 由于 $S_n = an^2 + bn(a < 0)$

因此数列 $\{a_n\}$ 是公差2a(负数)的等差数列,于是 $\{a_n\}$ 是递减数列

于是有 $a_1 > a_2 > \mathbf{L} > a_n$ ($n \ge 2$)

于是有 $na_1 > a_1 + a_2 + \mathbf{L} + a_n > na_n \ (n \ge 2)$

即 $na_n < S_n < na_1 \quad (n \ge 2)$ 因此 $n \ge 2$ 选 B

解 2:
$$a_1 = a + b$$
, $a_n = S_n - S_{n-1} = a(2n-1) + b = 2na + b - a$

于是 $na_1 = na + nb$, $na_n = 2n^2a + (b-a)n$,

当n≥2时

曲
$$na_1 - S_n = na - an^2 = na(1-n) > 0$$
, 得 $S_n < na_1$,

由
$$na_n - S_n = n^2 a - an = an(n-1) < 0$$
, 得 $na_n < S_n$

因此当 $n \ge 2$ 时 $na_n < S_n < na_1$

798、设 S_n, T_n 分别为等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的前项和,若对 n 属于正整数均有

$$\frac{S_n}{T_n} = \frac{7n+1}{4n+29}$$
,则 $\frac{a_9}{b_9} =$ ______(数列)

解:
$$\frac{S_n}{T_n} = \frac{\frac{1}{2}(a_1 + a_n)n}{\frac{1}{2}(b_1 + b_n)n} = \frac{a_1 + a_n}{b_1 + b_n} = \frac{7n + 1}{4n + 29}$$

故
$$\frac{a_1 + a_{17}}{b_1 + b_{17}} = \frac{7 \times 17 + 1}{4 \times 17 + 29} = \frac{120}{97}$$

因为
$$\frac{a_1 + a_{17}}{b_1 + b_{17}} = \frac{a_9 + a_9}{b_9 + b_9} = \frac{2a_9}{2b_9} = \frac{a_9}{b_9}$$
,故 $\frac{a_9}{b_9} = \frac{120}{97}$

806、已知a、b、c、d是等比数列(公比为q),求证:

(1)如果 q 不等于-1,那么 a+b, b+c, c+d 成等比数列

(2)
$$(a-d)^2 = (b-c)^2 + (c-a)^2 + (d-b)^2$$
(数列)

证明: (1) 因为 a、b、c、d 是等比数列(公比为 q)

所以
$$\frac{b+c}{a+b} = \frac{aq+bq}{a+b} = q$$
, $\frac{c+d}{b+c} = \frac{bq+cq}{b+c} = q$

于是
$$\frac{b+c}{a+b} = \frac{c+d}{b+c}$$
, 因此 a+b, b+c, c+d 成等比数列

(2)
$$(a-d)^2 = (a-aq^3)^2 = a^2(1-q^3)^2 = a^2(q-1)^2(1+q+q^2)^2$$

$$(b-c)^2 + (c-a)^2 + (d-b)^2 = (aq - aq^2)^2 + (aq^2 - a)^2 + (aq^3 - aq)^2$$

$$= a^{2}[q^{2}(1-q)^{2} + (q^{2}-1)^{2} + q^{2}(q^{2}-1)^{2}] = a^{2}(q-1)^{2}[q^{2} + (q+1)^{2} + q^{2}(q+1)^{2}]$$

$$= a^{2}(q-1)^{2}[(q+1)^{2} + q^{4} + 2q^{3} + 2q^{2}] = a^{2}(q-1)^{2}[(q+1)^{2} + q^{4} + 2q^{2}(q+1)]$$

$$= a^{2}(q-1)^{2}(q+1+q^{2})^{2}$$

故
$$(a-d)^2 = (b-c)^2 + (c-a)^2 + (d-b)^2$$

812、正项数列 $\{a_n\}$ 的前 n 项和 Sn 且 $2\sqrt{S_n}=a_n+1$.

求(1)数列 $\{a_n\}$ 的通项公式.

(2)设 $b_n = \frac{1}{a_n a_{n+1}}$, 数列{ b_n }的前 n 项和为 Bn,求证 Bn<0.5(数列)

解: 由
$$2\sqrt{S_n} = a_n + 1$$
 得 $S_n = (\frac{a_n + 1}{2})^2$

$$a_1 = (\frac{a_1 + 1}{2})^2$$
, $(a_1 - 1)^2 = 0$, $a_1 = 1$

$$1 + a_2 = (\frac{a_2 + 1}{2})^2$$
, $(a_2 - 1)^2 = 4$, $a_n > 0$, $a_2 = 3$

$$4 + a_3 = (\frac{a_3 + 1}{2})^2$$
, $(a_3 - 1)^2 = 16$, $a_n > 0$, $Ba_3 = 5$

猜出 $a_n = 2n - 1$ (*)

下面用数学归纳法证明(*)

当 n=1 时已验证,假设当 n=k 时,(*) 式成立,即有 $a_k = 2k-1$

则
$$S_k = (\frac{a_k + 1}{2})^2 = k^2$$
,于是当 n=k+1 时

$$S_k + a_{k+1} = (\frac{a_{k+1} + 1}{2})^2$$
, $(a_{k+1} - 1)^2 = 4k^2$, $a_n > 0$, $Ba_{k+1} = 2k + 1$

因此当 n=k+1 时(*) 式也成立

综上当 $n \in N_+ a_n = 2n - 1$

(2)
$$b_n = \frac{1}{a_n a_{n+1}} = \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} (\frac{1}{2n-1} - \frac{1}{2n+1})$$

$$B_n = \frac{1}{2}[(\frac{1}{1} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{5}) + \mathbf{L} + (\frac{1}{2n - 1} - \frac{1}{2n + 1})] = \frac{1}{2}(1 - \frac{1}{2n + 1}) = \frac{n}{2n + 1} < \frac{n}{2n} = 0.5$$

813、设实数 $a \neq 0$,且函数 $f(x) = a(x^2 + 1) - (2x + \frac{1}{a})$ 有最小值-1.

设数列 $\{a_n\}$ 的前 n 项和 Sn=f(n),令 $b_n = \frac{a_2 + a_4 + \mathbf{L} + a_{2n}}{n}$,n=1,2,3,……证明数列

$\{b_n\}$ 是等差数列. (数列)

解:
$$f(x)=a(x^2+1)-(2x+\frac{1}{a})=ax^2-2x+a-\frac{1}{a}=a(x-\frac{1}{a})^2+a-\frac{2}{a}$$

因为
$$f(x)$$
 有最小值-1,于是
$$\begin{cases} a > 0 \\ a - \frac{2}{a} = -1 \end{cases} \Rightarrow a = 1$$

$$f(x) = x^2 - 2x$$
, $Sn = f(n) = n^2 - 2n$

$$\stackrel{\text{\tiny Δ}}{=}$$
 n ≥ 2 lbf a_n = Sn- Sn₋₁ = (2n-1)-2=2n-3

$$b_n = \frac{a_2 + a_4 + \mathbf{L} + a_{2n}}{n} = \frac{\frac{n(a_2 + a_{2n})}{2}}{n} = \frac{a_2 + a_{2n}}{2} = \frac{1 + 4n - 6}{2} = \frac{4n - 5}{2}$$

当
$$n \ge 2$$
时 $b_n - b_{n-1} = -4$ 故{ b_n }是等差数列

839、两正数数列 $\{a_n\}$, $\{b_n\}$,如果 a_n,b_n^2,a_{n+1} 成等差数列, b_n^2,a_{n+1},b_{n+1}^2 成等比数列。

(1)求证 $\{b_n\}$ 是等差数列(2)已知 $a_1=1,a_2=3$,求 a_n 和 $b_1+b_2+b_3+\mathbf{L}+b_n$

证明: (1)
$$2b_n^2 = a_n + a_{n+1}$$
, $a_{n+1}^2 = b_n^2 b_{n+1}^2$, a_{n+1} , b_n , b_{n+1} 都是正数 $\Rightarrow a_{n+1} = b_n b_{n+1}$

故
$$2b_n^2 = a_n + a_{n+1} = b_{n-1}b_n + b_nb_{n+1} \Rightarrow 2b_n = b_{n-1} + b_{n+1}$$

于是{b_n}为等差数列

(2)
$$a_1 = 1, a_2 = 3 \Rightarrow 2b_1^2 = 4, b_1 = \sqrt{2}, \quad a_2 = b_1b_2 \Rightarrow b_2 = \frac{3}{\sqrt{2}} = \frac{3}{2}\sqrt{2}$$

$$b_n = b_1 + (n-1)d = \sqrt{2} + (n-1)\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(n+1)$$

当 $n \ge 2$ 时

$$a_n = b_{n-1}b_n = \frac{\sqrt{2}}{2}n \bullet \frac{\sqrt{2}}{2}(n+1) = \frac{1}{2}n(n+1)$$
,对 $a_1 = 1$ 也适用

$$b_1 + b_2 + b_3 + \mathbf{L} + b_n = \frac{n[\sqrt{2} + \frac{\sqrt{2}}{2}(n+1)]}{2} = \frac{\sqrt{2}n(n+3)}{4}$$

843、已知数列{an}的前 n 项和 $S_n = p^n + q$, (p≠0,p≠1),求数列{a_n}是等比数列的充要条件

解:设等比数列 $\{a_n\}$ 的公比为r

若公比r=1,则 $S_n=na_1$ 与 $S_n=p^n+q$ (p $\neq 0$,p $\neq 1$)不符

故公比
$$r \neq 1$$
,于是 $S_n = \frac{a_1(1-r^n)}{1-r} = -\frac{a_1}{1-r}r^n + \frac{a_1}{1-r}$

$$=Ar^n-A(\boxtimes \mathbb{E} A=-\frac{a_1}{1-r})$$

当
$$S_n = p^n + q$$
 (p \neq 0,p \neq 1)时,公比 $r = p, A = 1, -A = q$,于是 $q = -1$

当
$$S_n = p^n + q$$
 (p \neq 0,p \neq 1)时, $\{a_n\}$ 成等比数列的充要条件是: $q = -1$

878、(数列)

等差数列
$$\{a_n\}$$
中, $\frac{S_m}{S_n} = \frac{m^2}{n^2}$,求 $\frac{a_8}{a_{11}}$

解:
$$\frac{S_m}{S_n} = \frac{m(a_1 + a_m)}{n(a_1 + a_n)} = \frac{m^2}{n^2}$$
, 故 $\frac{a_1 + a_m}{a_1 + a_n} = \frac{m}{n}$

令
$$m = 15$$
, $m = 21$ 得

$$\frac{a_1 + a_{15}}{a_1 + a_{21}} = \frac{15}{21} + \frac{a_8}{a_{11}} = \frac{5}{7}$$

881、(数列)

等差数列
$$\{a_n\}$$
中, $S_p = \frac{p}{q}$, $S_q = \frac{q}{p}$, $p \neq q$,则 S_{P+q} ()

解:
$$(p, \frac{S_p}{p})$$
, $(q, \frac{S_q}{q})$, $(p+q, \frac{S_{p+q}}{p+q})$ 三点共线

故
$$\frac{S_{p+q}}{p+q} - \frac{1}{q} = \frac{1}{p} - \frac{1}{q}$$
 \mathbf{P} $\frac{S_{p+q}}{p+q} - \frac{1}{q} = \frac{1}{pq}$ \mathbf{P}

$$\frac{S_{p+q}}{p+a} = \frac{1}{p} + \frac{1}{a}, \quad S_{p+q} = 2 + \frac{q}{p} + \frac{p}{a} > 4$$

915、已知数列 $\{a_n\}$ 的前 n 项和为 $S_n = 1-a_n$,则数列 $\{a_n\}$ (n \in N*)是什么数列?

解: 当 n=1 时,
$$a_1 = 1 - a_1$$
, $a_1 = \frac{1}{2}$
当 $n \cdot 3 \cdot 2$ 时, $a_n = S_n - S_{n-1} = a_{n-1} - a_n$
 $2a_n = a_{n-1}, a_n = \frac{1}{2}a_{n-1} (n \ge 2)$,
故 $a_n = \frac{1}{2^n}$

939、原问题: 等差数列中首项为负,公差为正,且 $a_3<0$, $a_4>0$,且| a_3 |<| a_4 |,问 n 至少为多少时,Sn>0

解: 因
$$|a_3| < |a_4|$$
, $a_3 < 0$, $a_4 > 0$, 故 $-a_3 < a_4$, $a_3 + a_4 > 0$, $a_1 + a_6 > 0$, $S_6 > 0$ 又 $2a_3 < 0$, $a_1 + a_5 < 0$, $S_5 < 0$,

故问 n 至少为 6 时, Sn>0

问题 2: 等差数列中首项为负,公差为正,且 $a_3<0$, $a_4>0$,且且 $|a_3|<|a_4|$,问 $f(n)=S_n$ 的对称轴在哪里?

首项为负 $f(1) = S_1 = a_1 < 0$,公差为正, f(0) = 0

于是二次函数 $f(n) = S_n$, f(n) 开口向上, 与横轴有两个交点 (0,0) 和 (a,0)

对称轴
$$n = \frac{a}{2}$$

因
$$|a_3| < |a_4|$$
, $a_3 < 0, a_4 > 0$,故 $-a_3 < a_4$, $a_3 + a_4 > 0$, $a_1 + a_6 > 0$, $S_6 > 0$

又
$$2a_3 < 0$$
, $a_1 + a_5 < 0$, $S_5 < 0$,于是 $5 < a < 6$,对称轴 $n = \frac{a}{2} \in (2.5,3)$

解 2:
$$a_1 < a_2 < a_3 < 0 < a_4 < a_5$$
L

$$f(n) = S_n$$
 最小为 $f(3) = S_3$

$$f(4) - f(2) = S_4 - S_2 = a_3 + a_4 > 0$$
, $\exists \exists f(4) > f(2)$,

故可设
$$f(m) = f(3)$$
, $2 < m < 3$

对称轴
$$n = \frac{m+3}{2} \in (2.5,3)$$

959、已知
$$a_1 = \frac{1}{2}$$
, $a_n = a_{n-1} + \frac{1}{n^2 - 1}$ $(n \ge 2)$ 解: $a_n - a_{n-1} = \frac{1}{n^2 - 1} = \frac{1}{2} (\frac{1}{n - 1} - \frac{1}{n + 1})$ $(n \ge 2)$ 故当 $n \ge 2$ 时 $a_n = a_1 + (a_2 - a_1) + (a_3 - a_2) + \mathbf{L} + (a_n - a_{n-1})$
$$= \frac{1}{2} + \frac{1}{2} (\frac{1}{1} - \frac{1}{3}) + \frac{1}{2} (\frac{1}{2} - \frac{1}{4}) + \frac{1}{2} (\frac{1}{3} - \frac{1}{5}) + \mathbf{L} + \frac{1}{2} (\frac{1}{n - 1} - \frac{1}{n + 1})$$

$$= \frac{1}{2} [(1 + 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \mathbf{L} + \frac{1}{n - 1}) - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \mathbf{L} + \frac{1}{n + 1})]$$

$$= \frac{1}{2} (1 + 1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n + 1}) = \frac{5n^2 + n - 2}{4n(n + 1)}$$
 对 a_1 也适合

943、设不等式组 x>0,y>0,y £ - nx + 3n 所表示的平面区域为 D_n ,记 D_n 内的整点个数为 $a_n(n\hat{\mathbf{I}} N_+)$

(1)求
$$a_n$$
 (2)说 $S_n = \frac{1}{a_{n+1}} + \frac{1}{a_{n+2}} + \mathbf{L} + \frac{1}{a_{2n}}$, 求证 $S_n \stackrel{3}{\sim} \frac{7}{36} (n > 1)$

解: (1) 当 x=1 时, $y \le 2n$, 有 2n 个整点

当 x=2 时, $y \le n$,有 n 个整点

于是 $a_n = 3n$

(2)
$$S_n = \frac{1}{a_{n+1}} + \frac{1}{a_{n+2}} + \mathbf{L} + \frac{1}{a_{2n}} = \frac{1}{3} (\frac{1}{n+1} + \frac{1}{n+2} + \mathbf{L} + \frac{1}{n+n})$$

$$S_{n+1} - S_n = \frac{1}{3}(\frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}) = \frac{1}{6(2n+1)(n+1)} > 0$$

于是 S_n 递增,故当 $n \ge 2$ 时

$$S_n \ge S_2 = \frac{7}{36}$$

983、已知数列 $\{bn\}$ 的通项为 $bn=(-2)^{n+1}$,问是否存在数列 $\{dn\}$,使得 $d_1=2$, $d_n=\frac{b_n}{4}-2d_{n-1}$ 对一切大于 1 的正整数 n 都成立,若存在,求出 $\{dn\}$;若不存在,说明理由。

解:
$$d_n = \frac{b_n}{4} - 2d_{n-1}$$
, $d_n = \frac{(-2)^{n+1}}{4} - 2d_{n-1}$, 两边除以 $(-2)^n$ 得
$$\frac{d_n}{(-2)^n} = -\frac{1}{2} + \frac{d_{n-1}}{2^{n-1}}$$
, 设 $a_n = \frac{d_n}{(-2)^n}$ 于是 $a_n = -\frac{1}{2} + a_{n-1}$, 故 $\{a_n\}$ 是等差数列,公差为 $-\frac{1}{2}$, $a_1 = \frac{d_1}{-2} = -1$ 因此 $a_n = -1 + (n-1)(-\frac{1}{2}) = -\frac{1}{2}(n+1)$
$$\frac{d_n}{(-2)^n} = -\frac{1}{2}(n+1)$$
 , $d_n = (n+1)(-2)^{n-1}$

1086、在等差数列 $\{a_n\}$ 中, $a_1+3a_8+a_{15}=120$,则 $3a_9-a_{11}$ 的值为多少?

$$\Re a_1 + 3a_8 + a_{15} = 120$$

$$5a_1 + 35d = 120$$

$$a_1 + 7d = 24$$

$$3a_9 - a_{11} = 2a_1 + 14d = 48$$

1132、等差数列 $\{a_n\}$ (非常数列)中,第2、3、7项成等比数列,则公比q=____

解 1: 设公差为 d 则
$$(a_1 + 2d)^2 = (a_1 + d)(a_1 + 6d)$$

解得: d=0, d=
$$-\frac{3}{2}a_1$$
, $q = \frac{a_3}{a_2} = \frac{a_1 + 2d}{a_1 + d} = \frac{-2a_1}{-\frac{1}{2}a_1} = 4$

$$\text{ \mathbb{H} 2: } q = \frac{a_7}{a_3} = \frac{-a_3}{-a_2} = \frac{a_7 - a_3}{a_3 - a_2} = \frac{4d}{d} = 4$$

1169、在等差数列 $\{a_n\}$ 中,若 $S_m=S_n(m^n)$,则 $S_{m+n}=$ _____

解 1: 因为 $S_m = S_n(m^n)$, 不妨设 n > m

所以
$$S_n - S_m = a_{m+1} + a_{m+2} + \mathbf{L} + a_n = \frac{(n-m)(a_{m+1} + a_n)}{2} = \frac{(n-m)(a_1 + a_{m+n})}{2} = 0$$

于是 $a_1 + a_{m+n} = 0$, 故 $S_{m+n} = 0$

解 2: 当{ a_n }是 0 数列时, $S_{m+n} = 0$

当 $\{a_n\}$ 不是0数列时,由 $S_m = S_n(m^n)$,知

 $S_t = f(t), t\hat{\mathbf{I}}$ R 的图象对称轴是 $t = \frac{m+n}{2}$,与 t 轴的一个交点是(0,0),因此与另一

个交点是

 $(S_{m+n},0)$,因此 $S_{m+n}=0$

1174、已知:数列 $\{a_n\}$ 各项的倒数成差数列。

求证: $a_1a_2 + a_2a_3 + \mathbf{L} \ a_{n-1}a_n = a_1a_n(n-1)$

证明: 设数列 $\{\frac{1}{a}\}$ 的公差为 d

当d=0时,原式显然成立

当
$$d \neq 0$$
时, $\frac{1}{a_n} - \frac{1}{a_{n-1}} = d$,即 $a_{n-1}a_n = \frac{a_{n-1} - a_n}{d}$

于是
$$a_1a_2 + a_2a_3 + \mathbf{L} \ a_{n-1}a_n = \frac{a_1 - a_2}{d} + \frac{a_2 - a_3}{d} + \mathbf{L} + \frac{a_{n-1} - a_n}{d} = \frac{a_1 - a_n}{d}$$

因
$$\frac{1}{a_n} - \frac{1}{a_1} = d(n-1)$$
,故 $\frac{a_1 - a_n}{d} = a_1 a_n (n-1)$

因此 $a_1a_2 + a_2a_3 + \mathbf{L} a_{n-1}a_n = a_1a_n(n-1)$

1199、函数 $f(x) = 2^x - 2^{-x}$, $f(\log_2 a_n) = -2n$

- (1) 求 $\{a_n\}$ 的通项公式
- (2) 证明 $\{a_n\}$ 为递减数列

解: (1)
$$f(\log_2 a_n) = a_n - \frac{1}{a_n} = -2n$$

$$a_n^2 + 2na_n = 1$$
, $(a_1 + n)^2 = n^2 + 1$, $a_1 > 0$

于是
$$a_n = \sqrt{n^2 + 1} - n$$
,

(2)
$$a_n = \frac{1}{\sqrt{n^2 + 1} + n}$$

因
$$\sqrt{(n+1)^2+1}+n+1>\sqrt{n^2+1}+n$$

于是
$$\frac{1}{\sqrt{(n+1)^2+1}+n+1} < \frac{1}{\sqrt{n^2+1}+n}$$
,故 $a_{n+1} < a_n$,{an}为递减数列

1252、三个数组成等比数列,如果第 2 个数增加 8,则已知的等比数列变成了等差数列,如果再把第三个数增加 64 则它又成为等比数列,求这三个数。

解:设这三个数为a,b,c则第2个数增加8后的数列为a,b+8,c

再把第三个数增加 64 的数列为 a,b+8,c+64

于是
$$\begin{cases} b^2 = ac & (1) \\ a + c = 2(b+8) & (2) \\ a(c+64) = (b+8)^2 & (3) \end{cases}$$

把(1)代入(3)得 $b^2+64a=(b+8)^2$ 化简得b=4a-4

代入(2)得
$$c = 7a + 8$$

代入(1)得9
$$a^2$$
 - 40 a + 16 = 0解得 a = 4或 a = $\frac{4}{9}$

于是这三个数是 4, 12, 36 或
$$\frac{4}{9}$$
, $-\frac{20}{9}$, $\frac{100}{9}$

1253、有 4 个数, 其中前 3 个数成等差数列, 后 3 个数成等比数列, 并且第 1 个数与第 4 个数的和是 16, 第 2 个数与第 3 个数的和是 12, 求这 4 个数。

解: 设这四个数为a,b,12-b,16-a于是

$$\begin{cases} 2b = a + 12 - b & (1) \\ (12 - b)^2 = b(16 - a) & (2) \end{cases}$$

由(1)得a=3b-12代入(2)得 $(12-b)^2=b(28-3b)$ 化简得 $b^2-13b+36=0$

解得b = 4或b = 9

于是这四个数是0,4,8,16或15,9,3,1

1267、数列 $\{a_n\}$ 中, $a_n = \frac{n - \sqrt{2005}}{n - \sqrt{2006}}$,则数列前 100 项中的最大值与最小值分

别为 () A、 a_1, a_{45} B、 a_{46}, a_{45} C、 a_{45}, a_{46} D、 a_{45}, a_{44}

解:
$$a_n = \frac{n - \sqrt{2006}n + \sqrt{2006} - \sqrt{2005}}{n - \sqrt{2006}} = 1 + \frac{\sqrt{2006} - \sqrt{2005}}{n - \sqrt{2006}}$$

作出函数
$$y = 1 + \frac{\sqrt{2006} - \sqrt{2005}}{x - \sqrt{2006}}$$
 的图象

由图象得 a₄₅大, a₄₄小

1306

http://chat.pep.com.cn/lb5000/topic.cgi?forum=38&topic=21624&show=0

若数列 $\{a_n\}$ 为正项等比数列, S_n 是它的前 n 项和,若 S_1 , S_2 , S_3 成等差数列,则

公比
$$q = ___$$

解:
$$4S_2 = S_1 + S_3 \Rightarrow 4a_1 + 4a_2 = 2a_1 + a_2 + a_3 \Rightarrow 4a_1 + 4a_2 = a_3 - 3a_2 - 2a_1 = 0$$
,

$$q^{2} - 3q - 2(q > 0) \Rightarrow q = \frac{3 + \sqrt{17}}{2}$$

1317

http://chat.pep.com.cn/lb5000/topic.cgi?forum=38&topic=22442&show=0

设等比数列 $\{a_n\}$ 的各项均为正值,首项 $a_1 = \frac{1}{2}$ 前 n 项和为 S_n ,

且 2^{10} **S**₃₀- $(2^{10}+1)$ **S**₂₀+**S**₁₀=0 (1) 求{ a_n }的通项; (2) 求{ nS_n }的前 n 项和 Tn

解:
$$2^{10}S_{30}$$
- $(2^{10}+1)S_{20}+S_{10}=0$ ①

$$\mathbb{Z} (S_{20} - S_{10})^2 = S_{10} (S_{30} - S_{20}) 2$$

$$\pm 2 \Im (S_{20} - S_{10}) = S_{10}/2^{10}, \quad \frac{S_{20} - S_{10}}{S_{10}} = \frac{1}{2^{10}} = q^{10}, \quad q = \frac{1}{2}$$

1445、等差数列 $\{a_n\}$ 中, $a_3+a_7=9$,则 $a_6^2+a_6a_7+a_4^2+a_6a_1$ 的值等于?

$$a_6^2 + a_6 a_7 + a_4^2 + a_6 a_1 = a_6^2 + a_4^2 + 2a_6 a_4$$

= $(a_6 + a_4)^2 = (a_3 + a_7)^2 = 9^2 = 81$

1452

http://bbs.pep.com.cn/viewthread.php?tid=279407&page=1#pid2911828

在公比为 4 的等比数列 $\{b_n\}$ 中, 若 T_n 是数列 $\{b_n\}$ 的前 n 项积,则有 $\frac{T_{20}}{T_{10}}$, $\frac{T_{30}}{T_{20}}$, $\frac{T_{40}}{T_{30}}$

也是成等比数列公比为 4^{100} ,类比上述结论,相应地在公差为3的等差数列 $\{a_n\}$

中,若 S_n 是数列 $\{a_n\}$ 的前 n 项和,则数列_____也是等差数列,且公差

为_____ 提示:把积商改为和差

答:这个数列是 $S_{20}-S_{10},S_{30}-S_{20},S_{40}-S_{30}$, 公差是 3×100

1457、

http://bbs.pep.com.cn/viewthread.php?tid=281115&page=1#pid2927979

已知:
$$f(x) = -\sqrt{4 + \frac{1}{x^2}}$$
 ,数列 $\{a_n\}$ 的前n项和记为 S_n ,点 $(a_n, -\frac{1}{a_{n+1}})(n \in N^*)$ 在

曲线
$$y = f(x)$$
上,且 $a_1 = 1, a_n > 0$.

求证:
$$S_n > \frac{2n}{\sqrt{4n+1}+1}, n \in N*$$

$$\widehat{\mathbb{H}}: \frac{1}{a_{n+1}} = \sqrt{4 + \frac{1}{a_n^2}}, \frac{1}{a_{n+1}^2} = 4 + \frac{1}{a_n^2}, \frac{1}{a_n^2} = 4n - 3,$$

$$a_n = \frac{1}{\sqrt{4n-3}} > \frac{2}{\sqrt{4n+1} + \sqrt{4n-3}} = \frac{1}{2}(\sqrt{4n+1} - \sqrt{4n-3})$$

于是
$$S_n > \frac{1}{2}(\sqrt{4n+1}-1) = \frac{2n}{\sqrt{4n+1}+1}$$

1469

http://bbs.pep.com.cn/viewthread.php?tid=288538&extra=&page=1

已知数列 $\{a_n\}$ 中, $a_1 = 1, a_{n+1} = a_n^2 + 4a_n + 2(n \in \mathbb{N}^*)$,

(1)证明 $\{\lg(2+a_n)\}$ 为等比数列;

(2)证明
$$\frac{1}{2+a_1} + \frac{1}{2+a_2} + \mathbf{L} + \frac{1}{2+a_n} < \frac{1}{2};$$

(3)若
$$b_n = \frac{3}{a_n} + \frac{1}{4 + a_n} (n \in N^*)$$
,证明: $b_1 + b_2 + \mathbf{L} + b_n < 4 (n \in N^*)$

证明(1)
$$a_{n+1} = a_n^2 + 4a_n + 2, a_{n+1} + 2 = (a_n + 2)^2$$

$$\lg(a_{n+1}+2) = 2\lg(a_n+2)$$
, $\lg(a_1+2) = \lg 3 \neq 0$

故
$$\{lg(2+a_n)\}$$
为等比数列

(2)
$$\pm$$
 (1) $\lg(2+a_n) = 2^{n-1} \lg 3, 2+a_n = 3^{2^{n-1}}$

$$\frac{1}{2+a_1} + \frac{1}{2+a_2} + \mathbf{L} + \frac{1}{2+a_n} = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^4} + \mathbf{L} + \frac{1}{3^{2^{n-1}}}$$

$$< \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \mathbf{L} + \frac{1}{3^n} = \frac{\frac{1}{3}(1 - \frac{1}{3^n})}{\frac{2}{3}} = \frac{1}{2}(1 - \frac{1}{3^n}) < \frac{1}{2}$$

$$(3)b_{1} + b_{2} + \mathbf{L} + b_{n}$$

$$= \frac{3}{a_{1}} + \frac{3}{a_{2}} + \mathbf{L} + \frac{3}{a_{n}} + \frac{1}{4 + a_{1}} + \frac{1}{4 + a_{2}} + \mathbf{L} + \frac{1}{4 + a_{n}}$$

$$= (\frac{3}{3 - 2} + \frac{3}{3^{2} - 2} + \frac{3}{3^{4} - 2} + \mathbf{L} + \frac{3}{3^{2^{n-1}} - 2}) + (\frac{1}{3 + 2} + \frac{1}{3^{2} + 2} + \frac{1}{3^{4} + 2} + \mathbf{L} + \frac{1}{3^{2^{n-1}} + 2})$$

$$< (\frac{3}{3 - 2} + \frac{3}{3^{2} - 2} + \frac{5}{3^{4}} + \mathbf{L} + \frac{5}{3^{2^{n-1}}}) + (\frac{1}{3 + 2} + \frac{1}{3^{2} + 2} + \frac{1}{3^{4}} + \mathbf{L} + \frac{1}{3^{2^{n-1}}})$$

$$= 3 + \frac{3}{7} + \frac{1}{5} + \frac{1}{11} + \frac{6}{3^{4}} + \mathbf{L} + \frac{6}{3^{2^{n-1}}} < 3 + \frac{5}{9} + \frac{1}{5} + \frac{1}{11} + \frac{\frac{6}{3^{4}}}{1 - \frac{1}{3^{4}}} = 3 + \frac{3}{7} + \frac{1}{5} + \frac{1}{11} + \frac{3}{40} < 4$$