

15、以下四个命题中,正确命题的序号是_____

- ① \triangle ABC中, A>B的充要条件是 $\sin A > \sin B$;
- ②函数 y = f(x) 在区间 (1, 2) 上存在零点的充要条件是 $f(1) \cdot f(2) < 0$;
- ③等比数列 $\{a_n\}$ 中, $a_1=1, a_5=16$,则 $a_3=\pm 4$;
- ④把函数 $y = \sin(2-2x)$ 的图象向右平移 2 个单位后,得到的图象对应的解析式为 $y = \sin(4-2x)$

16、给定两个命题:

p: 对任意实数 x 都有 $ax^2 + ax + 1 > 0$ 恒成立;

q: 关于x的方程 $x^2-x+a=0$ 有实数根;

如果p与q中有且仅有一个为真命题,求实数a的取值范围.

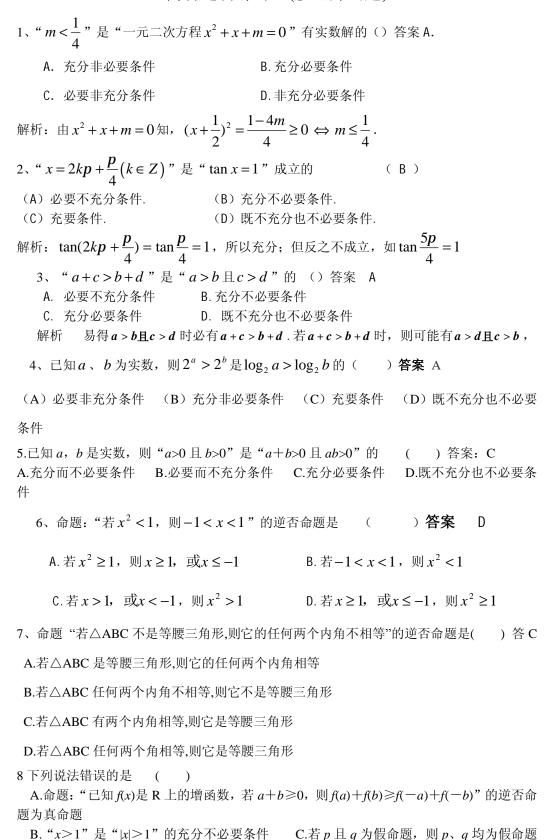
17、已知命题 p: 关于 x 的方程 $x^2+mx+1=0$ 有两个不等的负实根; 命题 q: 关于 x 的方程 $4x^2+4(m-2)x+1=0$ 无实根,已知命题 p 和 q 中,一个为真命题,一个为假命题,求 m 的取值范围.

18、命题 p: 实数 x 满足 $x^2-4ax+3a^2<0$,其中 a<0,命题 q: 实数 x 满足 $x^2-x-6\le 0$ 或 $x^2+2x-8>0$,且 $\neg p$ 是 $\neg q$ 的必要不充分条件,求 a 的取值范围.

19、已知二次函数 $f(x) = ax^2 + x$.对于 $\forall x \in [0,1], |f(x)| \le 1$ 成立,试求实数 a 的取值范围.

20、已知 $m \in \mathbb{R}$,对 $p: x_1$ 和 x_2 是方程 $x^2 - ax - 2 = 0$ 的两个根,不等 式 $|m-5| \le |x_1 - x_2|$ 对任意实数 $a \in [1,2]$ 恒成立;q: 函数 $f(x) = 3x^2 + 2mx + m + \frac{4}{3}$ 有两个不同的零点.求使" $p \perp q$ "为真命题的实数 m 的取值范围.

简易逻辑练习二(廖老师出题)



D.命题 p: " $\exists x \in \mathbb{R}$, 使得 $x^2 + x + 1 < 0$ ", 则 p: " $\forall x \in \mathbb{R}$, 均有 $x^2 + x + 1 \ge 0$ " 解析: A 中 $a + b \ge 0$, $a \ge -b$.

又函数 f(x)是 R 上的增函数, $:: f(a) \ge f(-b)$, ① 同理可得, $f(b) \ge f(-a)$, ②

由①+②, 得 $f(a)+f(b) \ge f(-a)+f(-b)$, 即原命题为真命题.

又原命题与其逆否命题是等价命题, :: 逆否命题为真.

若p且q为假命题,则p、q中至少有一个是假命题,所以C错误. 答案: C

9. "a=1" 是"函数 f(x)=|x-a|在区间[1, +∞)上为增函数"的() 答案: A

A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析: 当 a=1 时,函数 f(x)=|x-1|在区间[1, $+\infty$)上为增函数,而当函数 f(x)=|x-a|在区间[1, $+\infty$)上为增函数时,只要 $a\leq 1$ 即可.

10、已知 a>0,则 x₀满足关于 x 的方程 ax=b 的充要条件是 ()答案 C

(A)
$$\exists x \in R, \frac{1}{2}ax^2 - bx \ge \frac{1}{2}ax_0^2 - bx_0$$
 (B) $\exists x \in R, \frac{1}{2}ax^2 - bx \le \frac{1}{2}ax_0^2 - bx_0$

(C)
$$\forall x \in R, \frac{1}{2}ax^2 - bx \ge \frac{1}{2}ax_0^2 - bx_0$$
 (D) $\forall x \in R, \frac{1}{2}ax^2 - bx \le \frac{1}{2}ax_0^2 - bx_0$

解析: 已知 a>0,则 x₀满足关于 x 的方程 ax=b,于是 $x_0 = -\frac{b}{a}$

(C)
$$\forall x \in R, \frac{1}{2}ax^2 - bx \ge \frac{1}{2}ax_0^2 - bx_0, \forall f(x) = \frac{1}{2}ax^2 - bx, \exists f(x) \ge f(x_0)$$

于是
$$f(x)_{\min} = f(x_0), x_0 = -\frac{b}{a}$$

11、令 p(x): $ax^2 + 2x + 1 > 0$,若对 $\forall x \in \mathbb{R}$,p(x)是真命题,则实数 a 的取值范围是_____. 解析: 对 $\forall x \in \mathbb{R}$,p(x)是真命题,就是不等式 $ax^2 + 2x + 1 > 0$ 对一切 $x \in \mathbb{R}$ 恒成立.

(1)若 a=0,不等式化为 2x+1>0,不能恒成立;

$$\hat{1}$$
 $a > 0$
(2)若 $\hat{1}$ $\Delta = 4 - 4a < 0$ 解得 $a > 1$; (3)若 $a < 0$, 不等式显然不能恒成立.

综上所述, 实数 a 的取值范围是 a>1. 答案: a>1

12.已知 m、n 是不同的直线, α 、 β 是不重合的平面: 命题 p: 若 α // β , m \in α , n \in β , 则 m // n; 命题 q: 若 m \perp α , n \perp β , m // n,则 α // β ; 下面的命题中,①p 或 q; ② p 且 $\neg q$; ④ p 且 q.

真命题的序号是____①__(写出所有真命题的序号).

13、下列 4 个命题: ①命题 "若 Q 则 P"与命题 "若非 P 则非 Q" 互为逆否命题; ② "am² < bm²"

是"a<b"的必要不充分条件;③"矩形的两条对角线相等"的否命题为假;④命题"Ø⊄{1,2}

或 4∉ {1,2}"为真命题。其中真命题的序号是 是: _____

答案 ①34

14.下列结论:

- ①若命题 $p: \exists x \in \mathbb{R}$, $\tan x = 1$; 命题 $q: \forall x \in \mathbb{R}$, $x^2 x + 1 > 0$.则命题 " $p \land q$ " 是**假**命题;
- ②已知直线 l_1 : ax+3y-1=0, l_2 : x+by+1=0, 则 $l_1\perp l_2$ 的充要条件是 $\frac{a}{b}=-3$;
- ③命题"若 $x^2-3x+2=0$,则 x=1"的逆否命题为:"若 $x\neq 1$,则 $x^2-3x+2\neq 0$ ".其中正确结论的序号为 ③

- 15、以下四个命题中,正确命题的序号是_____
 - ① \triangle ABC 中,A>B 的充要条件是 $\sin A > \sin B$;
 - ②函数 y = f(x) 在区间(1, 2)上存在零点的充要条件是 $f(1) \cdot f(2) < 0$;
 - ③等比数列 $\{a_n\}$ 中, $a_1=1, a_5=16$,则 $a_3=\pm 4$;
 - ④把函数 $y = \sin(2-2x)$ 的图象向右平移 2 个单位后,得到的图象对应的解析式为 $y = \sin(4-2x)$

答案 ①

16、给定两个命题:

p: 对任意实数 x 都有 $ax^2 + ax + 1 > 0$ 恒成立;

q: 关于x的方程 $x^2-x+a=0$ 有实数根;

如果p与q中有且仅有一个为真命题,求实数a的取值范围。

解:对任意实数 x 都有 $ax^2 + ax + 1 > 0$ 恒成立

$$\Leftrightarrow a = 0 \ \, \Longrightarrow \ \, \begin{cases} a > 0 \\ \Delta < 0 \end{cases} \Leftrightarrow 0 \le a < 4 \ ;$$

关于 x 的方程 $x^2-x+a=0$ 有实数根 \Leftrightarrow $1-4a \geq 0 \Leftrightarrow a \leq \frac{1}{4}$; 如果 p 正确,且 q 不正确,有 $0 \leq a < 4, \exists a > \frac{1}{4} : \frac{1}{4} < a < 4$;

如果 q 正确,且 p 不正确,有 a < 0或 $a \ge 4$,且 $a \le \frac{1}{4}$.. a < 0 .

所以实数 a 的取值范围为 $(-\infty,0)$ $\mathbf{U}\left(\frac{1}{4},4\right)$

17、已知命题 p: 关于 x 的方程 $x^2+mx+1=0$ 有两个不等的负实根;命题 q: 关于 x 的方程 $4x^2+4(m-2)x+1=0$ 无实根,已知命题 p 和 q 中,一个为真命题,一个为假命题,求 m 的取值范围.

解:
$$p:$$

$$\begin{cases} \Delta = m^2 - 4 > 0 \\ m > 0 \end{cases}$$
 解得 $m > 2$. $q: \Delta = 16(m-2)^2 - 16 = 16(m^2 - 4m + 3) < 0$

解得 1 < m < 3. : p, q中一真一假. :有两种可能, 即 p 真 q 假或者 p 假 q 真,

即
$$\begin{cases} m>2 \\ m \leq 1$$
或 $m \geq 3 \end{cases}$ 或 $\begin{cases} m \leq 2 \\ 1 < m < 3 \end{cases}$,解得: $m \geq 3$ 或 $1 < m \leq 2$.

18、命题 p: 实数 x 满足 $x^2-4ax+3a^2<0$,其中 a<0,命题 q: 实数 x 满足 $x^2-x-6\le 0$ 或 $x^2+2x-8>0$,且 $\neg p$ 是 $\neg q$ 的必要不充分条件,求 a 的取值范围.

解: 设
$$A = \{x | x^2 - 4ax + 3a^2 < 0(a < 0)\} = \{x | 3a < x < a\},$$

 $B = \{x | x^2 - x - 6 \le 0$ 或 $x^2 + 2x - 8 < 0\} = \{x | x^2 - x - 6 < 0\} \cup \{x | x^2 + 2x - 8 > 0\}$

$$= \{x | -2 \le x \le 3\} \cup \{x | x < -4 \text{ } \text{ } \text{ } \text{ } x > 2\} = \{x | x < -4 \text{ } \text{ } \text{ } \text{ } \text{ } x \ge -2\}.$$

因为 $\neg p$ 是 $\neg q$ 的必要不充分条件,所以 $\neg q \Rightarrow \neg p$ 且 $\neg p \not \Rightarrow \neg q$

于是
$$p \Rightarrow q$$
且 $q \not \Rightarrow p$,故 $A \subseteq B$ $i \ a \geqslant -2$ 或 $i \ a \leqslant -4$ 即 $-\frac{2}{3} \leqslant a < 0$ 或 $a \leqslant -4$.

19、已知二次函数 $f(x) = ax^2 + x$.对于 $\forall x \in [0,1], |f(x)| \le 1$ 成立,试求实数 a 的取值范围.

$$\mathbb{H}: |f(x)| \le 1 \Leftrightarrow -1 \le f(x) \le 1 \Leftrightarrow -1 \le ax^2 + x \le 1, x \in [0,1] \dots$$

当 x=0 时,a≠0,①式显然成立;

当
$$x \in (0,1]$$
时,①式化为 $-\frac{1}{x^2} - \frac{1}{x} \le a \le \frac{1}{x^2} - \frac{1}{x}$ 在 $x \in (0,1]$ 上恒成立.

设
$$t=\frac{1}{x}$$
,则 $t\in[1,+\infty)$,则有 $-t^2-t\leq a\leq t^2-t$,所以只须

$$\begin{cases} a \ge (-t^2 - t)_{\text{max}} = -2 \\ a \le (t^2 - t)_{\text{min}} = 0 \end{cases} \Rightarrow -2 \le a \le 0, \ensuremath{\mbox{χ}} a \ne 0, \ensuremath{\mbox{χ}} -2 \le a < 0,$$

综上,所求实数 a 的取值范围是[-2,0).

20、已知 $m \in \mathbb{R}$,对 $p: x_1$ 和 x_2 是方程 $x^2 - ax - 2 = 0$ 的两个根,不等 式 $|m-5| \le |x_1 - x_2|$ 对任意实数 $a \in [1,2]$ 恒成立;q: 函数 $f(x) = 3x^2 + 2mx + m + \frac{4}{3}$ 有两个不同的零点.求使" $p \perp q$ "为真命题的实数 m 的取值范围.

20、解: 由题设知 $x_1+x_2=a$, $x_1x_2=-2$,

$$\therefore |x_1-x_2| = \sqrt{(x_1+x_2)^2-4x_1x_2} = \sqrt{a^2+8}$$
. $a \in [1,2]$ 时, $\sqrt{a^2+8}$ 的最小值为 3,要使 $|m-5| \le |x_1-x_2|$ 对任意实数 $a \in [1,2]$ 恒成立,只需 $|m-5|$

$$-51 \le 3$$
,即 $2 \le m \le 8$.
由己知,得 $f(x) = 3x + 2mx + m + \frac{4}{3} = 0$ 的判别式

$$\Delta = 4m^2 - 12(m + \frac{4}{3}) = 4m^2 - 12m - 16 > 0,$$

得 m < -1 或 m > 4.

,综上,要使" $p \perp q$ "为真命题,只需 $p \neq q$ 真,

$$12 \le m \le 8$$
 即 $1m < -1$ 或 $m > 4$ 解得实数 m 的取值范围是(4,8].

简易逻辑练习二(廖老师出题)

1、A. 2、A 3、A。4、B 5. C 6、D 7、C 8.C 9. A 10、C

16、解:对任意实数
$$x$$
 都有 $ax^2 + ax + 1 > 0$ 恒成立 $\Leftrightarrow a = 0$ 或 $\begin{cases} a > 0 \\ \Delta < 0 \end{cases} \Leftrightarrow 0 \le a < 4$;

关于 x 的方程 $x^2 - x + a = 0$ 有实数根 $\Leftrightarrow 1 - 4a \ge 0 \Leftrightarrow a \le \frac{1}{4}$;

如果
$$p$$
 正确,且 q 不正确,有 $0 \le a < 4$,且 $a > \frac{1}{4} : \frac{1}{4} < a < 4$;

如果q正确,且p不正确,有a < 0或 $a \ge 4$,且 $a \le \frac{1}{4}$ ∴a < 0.

故实数a的取值范围为 $(-\infty,0)$ $\mathbf{U}\left(\frac{1}{4},4\right)$

17、 **解**:
$$p$$
:
$$\begin{cases} \Delta = m^2 - 4 > 0 \\ m > 0 \end{cases}$$
 解得 $m > 2$. q : $\Delta = 16(m-2)^2 - 16 = 16(m^2 - 4m + 3) < 0$

解得 1 < m < 3.:p, q中一真一假. ::有两种可能,即p真q假或者p假q真,

即
$$m>2$$
 或 $m \le 2$ 或 $m \le 2$,解得: $m \ge 3$ 或 $1 < m \le 2$. 18、解: 设 $A = \{x | x^2 - 4ax + 3a^2 < 0(a < 0)\} = \{x | 3a < x < a\}$,

18、
$$\mathbf{H}$$
: $\mathcal{C}_{A} = \{x | x^2 - 4ax + 3a^2 < 0(a < 0)\} = \{x | 3a < x < a\}$

$$B = \{x | x^2 - x - 6 \le 0 \text{ } \text{if } x^2 + 2x - 8 \le 0\}$$

$$= \{x | x^2 - x - 6 < 0\} \cup \{x | x^2 + 2x - 8 > 0\}$$

$$=\{x|-2 \le x \le 3\} \cup \{x|x < -4 \text{ } \text{ } \text{ } x > 2\} = \{x|x < -4 \text{ } \text{ } \text{ } \text{ } x \ge -2\}.$$

因为 $\neg p$ 是 $\neg q$ 的必要不充分条件,所以 $\neg q \Rightarrow \neg p$ 且 $\neg p \not \Rightarrow \neg q$

于是 $p \Rightarrow q \perp q \not \Rightarrow p$, 故 $A \subseteq B$

$$\begin{array}{ccc}
\mathbf{1} & \mathbf{3} a \geqslant -2 & \mathbf{1} & \mathbf{a} \leqslant -4 \\
\mathbf{1} & \mathbf{a} < \mathbf{0} & \mathbf{1} & \mathbf{a} \leqslant -4
\end{array}$$

$$\mathbb{P} - \frac{2}{3} \leqslant a < 0 \quad \mathbf{1} \quad a \leqslant -4.$$

19、 $\#:|f(x)| \le 1 \Leftrightarrow -1 \le f(x) \le 1 \Leftrightarrow -1 \le ax^2 + x \le 1, x \in [0,1] \dots 1$

当 x=0 时,a≠0,①式显然成立;

当
$$x \in (0,1]$$
时,①式化为 $-\frac{1}{x^2} - \frac{1}{x} \le a \le \frac{1}{x^2} - \frac{1}{x}$ 在 $x \in (0,1]$ 上恒成立.

设
$$t = \frac{1}{r}$$
,则 $t \in [1,+\infty)$,则有 $-t^2 - t \le a \le t^2 - t$,所以只须

$$\begin{cases} a \ge (-t^2 - t)_{\text{max}} = -2 \\ a \le (t^2 - t)_{\text{min}} = 0 \end{cases} \Rightarrow -2 \le a \le 0, \ensuremath{\mbox{χ}} a \ne 0, \ensuremath{\mbox{ψ}} -2 \le a < 0,$$

综上,所求实数 a 的取值范围是[-2,0).

20、解: 由题设知 $x_1+x_2=a$, $x_1x_2=-2$,

$$|x_1-x_2| = \sqrt{(x_1+x_2)^2-4x_1x_2} = \sqrt{a^2+8x_1}$$

 $a \in [1,2]$ 时, $\sqrt{a^2+8}$ 的最小值为 3,要使 $|m-5| \le |x_1-x_2|$ 对任意实数 $a \in [1,2]$ 恒成立,只需|m-5|-5| \leq 3,即 2 \leq m \leq 8.

由己知,得 $f(x) = 3x^2 + 2mx + m + \frac{4}{3} = 0$ 的判别式

$$\Delta = 4m^2 - 12(m + \frac{4}{3}) = 4m^2 - 12m - 16 > 0,$$

得 m < -1 或 m > 4.

,综上,要使" $p \perp q$ "为真命题,只需 $p \neq q$ 真,

$$12 \le m \le 8$$
 即 1 解得实数 m 的取值范围是(4,8].